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Aim of this talk

o Classic (first-order) validity of the bootstrap usually refers to the case where
the distribution of the bootstrap statistic (conditional on the original sample)
replicates the asymptotic distribution of an estimator or a test statistic.

@ In many situations, however, the (conditional) distribution of the bootstrap
statistic is random in the limit (as n — o) ...
. and bootstrap inference is commonly regarded as invalid.

@ Tha aim of this talk is to give a helicopter tour on inference under random
limit bootstrap measures.
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Aim of this talk

@ Main takeaways from this seminar:
— Lack of classic bootstrap validity does not imply that the bootstrap cannot
provide reliable inference;
— In fact, bootstrap validity can be proved even in cases where the limit boot-
strap measure is random;
— Need a twist in what we mean by bootstrap validity — focus on bootstrap
p-values;
— New (old) machinery needed: theory of random measures (Kallenberg)

@ Presentation based on 2013-2020 joint works with lliyan Georgiev,2013:16,18,20
Rob Taylor,?013:16:18 Anders Rahbek?%1%:20 and Peter Boswijk202°
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Background

@ Starting point: the bootstrap is usually considered a device to estimate the
asymptotic distribution of a statistic of interest.

o Consider a sample {y1, ..., ¥, } and a statistic
Tn =1 (Y1, Yn)
with asymptotic distribution

w
Th — Too

Gn (x) = P(mh < x) = P(Too < x) =: Gy (x)

o Let {yf,...,y } be the bootstrap sample, which depends on {y1, ..., y,} and a
set of bootstrap innovations {n7,...,n%}, independent of the original sample.
The bootstrap analog of 7, is

T =1 (s ¥n) = Vs Vns 15 s M)
Its distribution, given the original data, is

Gy (x) = P(7;, < x) = P(r;, < x[{y1, -, yn})
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Background

@ 'Bootstrap consistency’: the bootstrap estimates the asymptotic distribution

of 7, that is
G, (x) = P*(1p < x) =p Goo (x)

(often denoted as 7% “, T, ‘weak convergence in probability")

o Continuity of G also implies the stronger result (Polya's theorem):

sup |P* (75 <x) =P (1, <x)| =, 0
xER

o Key implication: the bootstrap p-value satisfies

py = P (mh < X)\=, = Gy (Tn) —w U[0, 1]
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Background

o Interestingly, there are many cases where G (-) converges (in some sense) to
a random process;

@ Examples are application of the bootstrap to:

> first-order autoregressions with a unit root (Basawa et al, 1991A"5);

» when a parameter is on the boundary of the parameter space (Andrews, 200
» models with infinite variance innovations (Knight, 1988"°°);

> tests on the co-integrating relations in VAR models (Cavaliere et al, 201
» 2SLS estimators under weak instruments;

» cube-root consistent estimators (Cattaneo et al., 20205CMA);

> inference after model selection;

» fixed b asymptotics (Lahiri, 2010; Shao and Politis, 201377°%);

» Hodges-LeCam superefficient estimators (Beran, 19974°M)

» proxy SVARs with weak instruments (Fanelli et al. 2020)

OECMA);

5ECMA)

@ This automatically implies that the bootstrap is not consistent for the asymp-
totic distribution of the statistic of interest:

G,T (X) = 'D(Tz < X|y15 --->Yn) “p Goo (X)
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Background - Unit root test

o First order autoregression with a unit root (Basawa et al, 19914°°):
Vi=ayi1+e, a=1, & iid.(0,0%)

» Jo: Ornstein-Uhlenbeck process with mean reversion parameter ¢ (Brownian
Motion for ¢ = 0)

He(x) := P (/ chJc//Jf < x) [Ho(-) = cdf of DF distribution]

» With & := OLS(yt|y:—1),

Thi=n(0 —1) =y Teo 1= /JodJo//Jgdu, i.e. P(mh < x)— Ho(x)

o (Fully parametric) Bootstrap:
>yt =Gy, el e iid. N(0,6?)
» bootstrap estimator &* := OLS(y;"|y;"1) and test statistic 7, := n(&" — &).
» As n — oo, the limit bootstrap measure is random:
Too)

P* (15 < x) —w Hr_(x) = </J deTm//JZmdugx

o Wayout: a different bootstrap scheme (see several papers on bootstrap UR
testing); m/n bootstrap

G. Cavaliere (UniBO) RANDOM BOOTSTRAP MEASURES 2020 7/1



Background - Parameters on the boundary

o Simple location model (Andrews, 20005¢MA)

>y =0+e¢, € iid(0,1), 6 €[0,00).
» Gaussian (Q)MLE: 6, = max{0, y,}, with asymptotic distribution

e z if0>0
T"'_\/E(o”_a)_’””{z+;:max{o,2} ifo—o (£ ~N(O1)

@ Bootstrap:
» yi =0, +ef e iid. N(0,1) (independent of the original data)
o = max{0, y; } with test statistic 7, = ﬁ(@: —0,) with
P*(rh < x) = P*(v/n(B — 01) < x) = & (x) I (x > —/nb,)
> When 6 > 0,
P*(15 < x) —p ®(x) = P(Z < x)
» However, when 6 =0,
P*(v/n(By — 0,) < x) —w & (x) (x > —=Z%)
or, equivalently, with Z*, Z independent,
Py max{—Z",Z}|Z*
e Solution: a different bootstrap scheme (see Cavaliere-Nielsen-Rahbek, 201677°4)
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Background - Infinite variance

® y; = ji+&r, & symmetric with E€? = +00 and in the domain of attraction of
a stable law with index « € (0, 2), &; € D ()

» With i, := ¥» = " 3°7_, y¢ it holds that
T = 3 (i, — 1) 2 S ()

o Bootstrap: y; = [i,+¢€}, where €} i.i.d. from the centred residuals &; := y;—fi,

> the bootstrap statistic is
o= ay (i = p,), P =ya =0Tty v
» Then (Knight, 1989"°%)
P*(r7 < x) =y P (ZH Sk Z(M;f — 1) < x| 241, 2o, )
where: My iid Poisson(1); o iid with P(dx = 1) = P(6«x = —1) = %; {2,y

arrival times of a standard Poisson process.
» Zo = (Z1,25,...)": limit of the normalized order statistic of the |e;|'s

@ Wayout: m out of n bootstrap
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Background - Non-stationary stochastic vol [NSV]
o Location model with NSV (Hansen, 19956¢MA: Boswijk et al., 2020)
ye = p+ocer, Ei_1(er) =0, Et_l(af) =1
@ The assumption of non-stationary stochastic vol:
» With o, (u) the D[0, 1] approximant of {0}
on(U) =0  ucl0,1]
it holds that o, (-) —w o (-) € C[0,1].

o Examples:

> Hansen's NSV: o+ := h(co + Tz Siie) on() —wo():=h(c+aB())

1/2

> near integrated GARCH: w = agn™ a1 = ainV?, B =1—a+ an?

(Nelson, 199178); o (-) is a diffusion

@ The standardized estimator of the mean is mixed normal as n — oo:
n 1
7o =0, —p) =n"? Zatet —w Too = / o (u)dB (u)
t=1 0

1
= MN (0, V), with vz/ o?(u)du
0
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Background - Non-stationary stochastic vol [NSV]
o (Gaussian) Wild Bootstrap (Wu, Liu, Mammen, Hansen, etc.):

yi =emf, nf iid N(0,1), independent of {y:}

with bootstrap statistic

. =12\ * -12\ *
Thi=n E =n E €
n 1t rq Cte

o Conditional on the original data, with V, := n=2 37 2,
Thl{ye} ~ N(O, ),
or equivalently (with ® denoting the N(0, 1) cdf)
P* (75 < x) = P*(N(0, V) < x) = ®(V;/%x), x e R
e Since V, —, V = J o2 (u)du, we have a random limit:
P*(r5 < x) =, ®(VV2x) = P(N(0,V) < x|V), xeR
7, N0, V) |V

The bootstrap does not replicate the asymptotic mixed normality of 7.
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Background and key insights

@ In all the previous examples, the presence of a random limiting distribution for
the bootstrap statistic invalidates classic bootstrap inference (the bootstrap
does not estimate the unconditional distribution of the statistic of interest).

@ However, | will illustrate why this fact does not automatically imply that boot-
strap inference is not valid:

» the bootstrap can still deliver confidence intervals (or hypothesis tests) with the
desired coverage probability (or size) when n — oo;

> bootstrap inference may also have the appealing asymptotic interpretation of a
conditional inferential procedure ...
...hence delivering efficiency (or power) gains over standard unconditional infer-
ence.
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Sketch of what follows

Random bootstrap measures in a Gaussian regression model and new definitions
of bootstrap validity

@ A first result on bootstrap validity under random bootstrap measures
» Reuvisiting infinite variance case

@ A second result on bootstrap validity
> The case of co-integrating regressions

Application: tests for parameter constancy in a linear model with non-stationarity
regressors
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Random bootstrap measures in a Gaussian linear model

o Consider a simple linear model
yr = Bx: + €, t=1,2,..,n

where €;'s are i.i.d. N(0,1) and x;'s are observable random variables, indepen-
dent of the unobservable ¢;'s. We assume further that

n
o 2
M, = E _ x; >0, a.s.

o Let 3 = OLS(y:|x;) and 7, := 3 — B (its distribution is unknown)
o Important fact (see later): conditional on the x;s,

n
Tn|{Xt} = M,Tl Zt:l XtE¢

@ In terms of CDFs,

My ~ N (0, M )| M, = M Y2N(0,1)| M,

P(1n < x|[{x}) = ®(M}/?x), x € R
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Random bootstrap measures in a Gaussian linear model
o Classic (parametric) fixed-design bootstrap sample (e.g. Hall, 1992):
vi=Bxte  (t=12..0)
where ¢} is i.i.d. N(0,1), independent of the original data.
o With 3" = OLS(y/|x) and 7% := 3" — B, conditionally on the original data,
n
ral ey = Myt S st yeoxe) ~ N (0. M, ) [ M,
e That is,
P*(1; < x) = P(m} < x[{xe, ye}) = ®(My/?x), x € R

@ Important fact: the distribution the bootstrap statistic 7}, conditionally on the
data, coincides with the distribution of the original statistic 7,,, conditionally
on {x:}:

Gy (x) := P*(7; < x) = P(7a < x|{x}) = ®(M,"*x)

@ Another important fact: even in this very simple example, the limit bootstrap
measure can be random.
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Random bootstrap measures in a Gaussian linear model:

Fact 1

o Case 1 (stationary&ergodic regressor):
M, —, M > 0 (M non-stochastic)

Then,
Gr (x) = ®(MY2x) —, d(M?x), x € R

7 N (0, M)

o Notice that in this case, 7, —, N (0, M™1).
@ Hence, classic bootstrap consistency holds.
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Random bootstrap measures in a Gaussian linear model:
Fact 1

e Case 2 (nonstationary regressor):
M, —, M >0 (M stochastic)
For example, x, = T /2 Zle gi. Then,
G (x) = d(M/2x) -, d(M/?x), x € R
7% N(0,MY) M
(weak convergence in distribution)

@ Notice that in Case 2, 7, —,, MN (0, /\/I’l)

@ Hence the limit bootstrap measure does not replicate the asymptotic distribu-
tion of 7.

@ Is the bootstrap really doing badly here?
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Random bootstrap measures in a Gaussian linear model:
Fact 2

@ Twist the focus on the bootstrap p-value,

pn = P (rh <X, = Gy (74)

X=Tg
o Using G (x) = ®(Mr/?x) and 7,|{x,} ~ [Ma />N (0,1)]|M,,
* * d —
Py = Gy (Ta) = ®(M*7,) = S(M/> M, V2N (0,1)) = (N (0,1)) ~ U[0, 1]
@ This same result holds even conditionally on M,:
pZ|Mn ~ U[Ov 1]
@ Notice that the usual bootstrap consistency,

sup [P* (7, < x) = P(Ta < x)[ =, 0
x€R

does not hold here.
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Random bootstrap measures in a Gaussian linear model:
Fact 3

@ Why do we obtain uniformity of the p-values?

» The key fact (to be exploited later for general applications) is that

P(ra<x|{x}) \ _ [ oM"x)\ (1 1
( Pr(ri<x) ) oM/ ) \1 (M)
such that the bootstrap replicates a particular conditional distribution of 7, (and

not its asymptotic/unconditional distribution)
» Going to the limit

(PG )= (1) owarn (1) oy

> Equivalently (‘weak convergence in distribution’)

Tal{xe} w 1 -1
( 7 yi} )"W ( 1 )N(O’M ) Im
@ Thus, the bootstrap is consistent for a limiting conditional distribution of 7,
(but not for its asymptotic distribution).
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(Re-)defining bootstrap validity

o Let 7, = 7,(D,) be the original statistic and 7 = 7%(D,, W) the bootstrap
statistic:

» D, denotes the data;
» W, are auxiliary bootstrap variates.

@ For instance,

> in the regression model case, D, := {y:,xt}i—; and W, = (ef,...,e})" (iid
N(0, 1) bootstrap shocks);
» in the NSV case, D, := {y:}i_1, W) = (wy,...,w;)" (Rademacher bootstrap
shocks).
@ We also consider a (possibly unobservable) random element X, (on the same
probability space of D, and W)):

> in the regression model case X, = (x1,..., xa)";

» in the NSV case, X, := {o+}{-;.
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(Re-)defining bootstrap validity

o Let pf := P*(r; < 7,) denote the bootstrap p-value. Let X, be a random

element (e.g. a function of the data).
Definition
(i) Bootstrap inference is asymptotically unconditionally valid if

P(py < q)— q(all g €(0,1))

so that p* is asymptotically U(0,1).
(ii) Bootstrap inference is asymptotically valid conditionally on X, if

P(p; <qlX,) 2 q (all g € (0,1))

so that p* is asymptotically U(0,1) distributed conditionally on X,.
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Assessing bootstrap (conditional) validity

@ Based on Cavaliere and Georgiev (20205CMA) [GC]

@ We start by providing sufficient conditions for the bootstrap to be valid condi-
tionally.

@ Such conditions only require (joint) weak convergence of the distribution of
the bootstrap statistic, conditional on the original data, and of a conditional
distribution of the original statistic.

Theorem

N .
If, as n — oo, T, and T} satisfy

P oy | =1 ]F@

in D(R) x D(R), where F is a random cdf with a.s. continuous sample paths,
then:

sup |P (75 < u| Dy) — P (7a < ul X,)| 2 0.
ueR
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Assessing bootstrap (conditional) validity

@ A consequence of the previous result is the following.

Theorem (cont'd)
Moreover,
Pl Xn =5 U(0,1),
so the bootstrap is asymptotically valid conditionally on X,, and hence uncondi-
tionally:
pr % U(0,1).

o If P(7,<ulX,) and P*(7% < u) do not converge to the same limit, the
bootstrap cannot be valid conditionally on X, (it could be valid conditionally
on some other random element)
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Infinite variance (reprise): bootstrap validity

o Consider the following wild bootstrap (Cavaliere, Georgiev and Taylor, 2013£R,
20164°%):

~ %

Fri=a, 1Y er, where e} = 2w}, w; i.i.d.(0,1) Rademacher

{gt}> “P (i 6:7; < x Z)

@ Again, a random limiting distribution. Similar to Aue et al. (20085ER) for
permutation CUSUM tests.

(wild bootstrap with Rademacher bootstrap shocks)
o CGT show that

n

1 n
P*(?2<X):P< E gew) < x
a
t=1
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Infinite variance (reprise): bootstrap validity

@ Why is this bootstrap better than the i.i.d. bootstrap?
e In the symmetric case (P(J,= 1) = P(6,= —1) =3), as in Knight (1989),

Z)
which is a random distribution....
. identical to the weak limit of the Rademacher-wild bootstrap statistic
where the limit is a continuous random cdf (a.s.)

Z)
The two convergences are joint:

P (70 < x[{le¢]}) 1 -
( Prriex) ) )P ;‘szfgxz
According to the previous theorem:
> the bootstrap mimics a particular conditional distribution of the original statistic,

i.e. the distribution of S, conditional on {|e:|};
» bootstrap p-values are uniformly distributed, conditional on {|e¢|}.

G. Cavaliere (UniBO) RANDOM BOOTSTRAP MEASURES 2020 25 /1

P(tn < x| €1l len]) % P (Zétzt < x

t=1

t=1

P (7i<x) %P (Zétzt < x




Infinite variance (reprise): coverage in finite samples

(N = 50,000 MC simulations, B = 999 bootstrap repetitions; €; symmetric)

coverage
@ n asympt. iid BS Wild BS

075 20 0.959 0.887

0.75 100 0.959 0.904

0.75 500 0.958 0.906

1.00 20 0.950 0.899

1.00 100 0.951 0.913

1.00 500 0.951 0.915

125 20 0.957  0.908

1.25 100 0.956  0.925

1.25 500 0.957 0.925

150 20 0.950 0.917

1.50 100 0.949 0.932

1.50 500 0.950 0.934

2.00 20 0.950 0.929

2.00 100 0.950 0.945

2.00 500 0.950 0.949
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Infinite variance (reprise): coverage in finite samples

(N = 50,000 MC simulations, B = 999 bootstrap repetitions; €; symmetric)

coverage

@ n asympt. iid BS Wild BS
075 20 0.959 0.887 0.955
0.75 100 0.959 0.904 0.964
0.75 500 0.958 0.906 0.960
1.00 20 0.950 0.899 0.943
1.00 100 0.951 0.913 0.953
1.00 500 0.951 0.915 0.952
125 20 0.957  0.908 0.936
1.25 100 0.956  0.925 0.950
1.25 500 0.957 0.925 0.950
150 20 0.950 0.917 0.931
1.50 100 0.949 0.932 0.948
1.50 500 0.950 0.934 0.948
2.00 20 0.950 0.929 0.927
2.00 100 0.950 0.945 0.945

2.00 500 0.950 0.949 0.950
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Conditional bootstrap validity and conditional inference

@ Under conditional validity,
pr| X, —w U(0,1).

@ This implies that the bootstrap can be seen as a tool for conditional inference.

@ Hence, we expect efficiency (or power) gains over standard unconditional in-
ference.

@ Price to pay (if any): power functions/length of confidence sets are random
(they depend on X,)

> in the InfV example, they depend on {|e|}
> in the linear model example, they depend on M,

also in the limit n — oo.
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Infinite variance (reprise): efficiency gains

(N = 50,000 MC simulations, B = 999 bootstrap repetitions; €; symmetric)

coverage COND vs UNC CI widths
a n asympt. iid BS  Wild BS 25% median 75%
075 20 0.959 0.887 0.955
0.75 100 0.959 0.904 0.964
0.75 500 0.958 0.906 0.960
1.00 20 0.950 0.899 0.943
1.00 100 0.951 0.913 0.953
1.00 500 0.951 0.915 0.952
125 20 0.957 0.908 0.936
1.25 100 0.956  0.925 0.950
1.25 500 0.957 0.925 0.950
150 20 0.950 0.917 0.931
1.50 100 0.949 0.932 0.948
1.50 500 0.950 0.934 0.948
200 20 0.950 0.929 0.927
2.00 100 0.950 0.945 0.945

2.00 500 0.950 0.949 0.950
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Infinite variance (reprise): efficiency gains

(N = 50,000 MC simulations, B = 999 bootstrap repetitions; €; symmetric)

coverage COND vs UNC CI widths
a n asympt. iid BS  Wild BS 25% median  75%
075 20 0.959 0.887 0.955
0.75 100 0.959 0.904 0.964
0.75 500 0.958 0.906 0.960
1.00 20 0.950 0.899 0.943
1.00 100 0.951 0.913 0.953
1.00 500 0.951 0.915 0.952
125 20 0.957 0.908 0.936
1.25 100 0.956  0.925 0.950
1.25 500 0.957 0.925 0.950
150 20 0.950 0.917 0.931
1.50 100 0.949 0.932 0.948
1.50 500 0.950 0.934 0.948
200 20 0.950 0.929 0.927 0.843 0.948 1.057
2.00 100 0.950 0.945 0.945 0.940 0.991 1.044

2.00 500 0.950 0.949 0.950 0.972 1.000 1.031
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Infinite variance (reprise): efficiency gains

(N = 50,000 MC simulations, B = 999 bootstrap repetitions; €; symmetric)

coverage COND vs UNC CI widths
a n asympt. iid BS  Wild BS 25% median  75%

075 20 0.959 0.887 0.955
0.75 100 0.959 0.904 0.964
0.75 500 0.958 0.906 0.960
1.00 20 0.950 0.899 0.943
1.00 100 0.951 0.913 0.953
1.00 500 0.951 0.915 0.952
125 20 0.957 0.908 0.936
1.25 100 0.956 0.925 0.950
1.25 500 0.957 0.925 0.950
1.50 20 0.950 0.917 0.931 0.397 0.503  0.687
1.50 100 0.949 0.932 0.948 0.418 0.514  0.694
1.50 500 0.950 0.934 0.948 0.422 0.518  0.691
200 20 0.950 0.929 0.927 0.843 0.948 1.057
2.00 100 0.950 0.945 0.945 0.940 0.991 1.044
2.00 500 0.950 0.949 0.950 0.972 1.000 1.031
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Infinite variance (reprise): efficiency gains

(N = 50,000 MC simulations, B = 999 bootstrap repetitions; €; symmetric)

coverage COND vs UNC CI widths
a n asympt. iid BS  Wild BS 25% median  75%

075 20 0.959 0.887 0.955 0.020 0.043  0.118
0.75 100 0.959 0.904 0.964 0.021 0.043  0.113
0.75 500 0.958 0.906 0.960 0.021 0.043  0.111
1.00 20 0.950 0.899 0.943 0.096 0.159  0.306
1.00 100 0.951 0.913 0.953 0.100 0.162 0.308
1.00 500 0.951 0.915 0.952 0.101 0.161 0.303
125 20 0.957 0.908 0.936 0.196 0.275 0.439
1.25 100 0.956 0.925 0.950 0.205 0.283  0.440
1.25 500 0.957 0.925 0.950 0.207 0.285 0.439
1.50 20 0.950 0.917 0.931 0.397 0.503  0.687
1.50 100 0.949 0.932 0.948 0.418 0.514  0.694
1.50 500 0.950 0.934 0.948 0.422 0.518  0.691
200 20 0.950 0.929 0.927 0.843 0.948 1.057
2.00 100 0.950 0.945 0.945 0.940 0.991 1.044
2.00 500 0.950 0.949 0.950 0.972 1.000 1.031
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Bootstrap ‘unconditional’ validity

@ Bootstrap validity ‘unconditionally’: p} —,, U(0,1)
(weaker than p¥| X, —, U(0,1))

o Consider the co-integrating regression
Yi = Bxt + &

where:

> Xt = Xe—1+1; (x0 =0)
» e := (&, 7,) stationary and ergodic MDS, Q := Ee;e{ = diag{wee,wnn} > 0.

o Object: bootstrap inference on /3 based on 3 = OLS(y:|x;)
@ As is known (e.g. Chan and Wei, 19884°°),

23 e (BB,

t=1

~

-1
Thi=n(B—-B) > (/ Bf,) /B,,dB8 2 N(0,w. M) (mixed Gaussian)

due to the independence of B, and B; (here M := [ B3).
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Bootstrap ‘unconditional’ validity

o (Fixed regressor) bootstrap. With &.. := 131 (y: — Bx:)?,

= Bx; + @%et, &F ii.d.N(0,1) (independent of the data)

The bootstrap analogue of 3 is 3 = OLS(y;"|xt)

e For 7% := n(B* — f3), as in the linear model example,
Tl {xe, e} ~ N0, n&ec M) | (M, @22
o Since n2M, :=n231_ x? —, M:= [ B2, if &.. > w.., by the CMT
P* (1% < x) = @ (n T MY?)x) & d(wMY?X), x € R,

or, equivalently,

*

mh 5w N(O,wee M| M

n
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Bootstrap ‘unconditional’ validity

@ In summary,

7o = n(B — B) —u N(0,w.e M~?) (mixed Gaussian)
5 =n(B - pB) g N(0,weeM~")| M (a component of the mixture)
e The unconditional limit of 7, := n(3 — j3) obtains by integrating over M the

conditional limit of 7% := n(3" — j3) given the data.

@ This implies asymptotic unconditional validity of the bootstrap, see next slide.
Notice that by direct evaluation

Py = P (7h < )],y = OOT2M (B — )

" &((wee [ B2)7V2 [ B,dB.) = ®(N(0,1)) £ U(0, 1)

@ Notice that without additional assumptions, the same result does not hold
conditionally on {x;}
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Bootstrap ‘unconditional’ validity: a general result

o Let

» T, original statistic; 7 bootstrap statistic;
» G, (x):= P*(7; < x) bootstrap (conditional) distribution.

e Sufficient conditions for bootstrap unconditional validity (Theorem 3.1 in CG):

Theorem

Suppose that for some random element X
Tn =wToor Gy (1) 2w G() =P (7o <+|X) (jointly)

Then, if G has a.s. continuous sample paths, the bootstrap is valid unconditionally:

Py = G} (7a) = U[0,1]

o Notice that P (7o < x) = [ P (7o < x|X) dP (X);
@ It applies to the co-integrating regression case;

@ This theorem does not imply conditional validity of the bootstrap.
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Bootstrap ‘unconditional’ validity
@ Bootstrap validity conditionally on {x;} requires strengthening of the assump-
tions.
@ Assume that ¢, is MDS with respect to G, = o({e}.__ . U{n,}sez), and that

nil Z::l E(5%|{775}sez) E}. Wee- Then,
T”|{Xt} w /1
w B,dB
< Tol{xe, ye} ) - < , naee
1
1

-1
B,

or, equivalently,

< P(rs < -[{x}) )

1 —1/2p91/2
P*(T;k, < ) 1 ) (D(wes M ')v -€ER

@ Hence, the bootstrap is consistent for the limiting conditional distribution of

Tol{xt} and
pal{xt} =, U(0,1)
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‘Conditional’ vs ‘unconditional’ bootstrap validity
() (i)

n=1000

Figure: Fan chart of the simulated cdfs (conditional on X,) of the bootstrap p-values.
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Application: bootstrap tests of parameter constancy

o Consider the classical problem of parameter constancy testing in regression
models (Chow, 1960ECMA. Quandt, 19607454: Nyblom, 19897454. Andrews,
1993ECMA. - Andrews and Ploberger, 1994ECMA. Elliott and Miiller, 20067ES;
Perron and Qu, 20067°F ,...).

@ Specifically, we deal with bootstrap implementations when the moments of the
regressors may be unstable over time (Hansen, 20007°F).

o Model:
Yntzﬁltx,,t—i-snt (t:172,...,n).
with null hypothesis Hy : 8, = 8, (t =2,...,n)
@ In order to test Hy against Hy, we consider the ‘sup F' test statistic

Fn = max F,|

relr,7)

Here F|,, | is the usual F statistic for testing the auxiliary null 6 = 0 in the
regression

Ynt = ﬁlxnt + alxnt]l{tz [rn|} + Ent
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Bootstrap tests of parameter constancy

@ A high level assumption on x; and ¢; (e.g. allowing for unit root regressors or
for infrequent random level shifts) is the following (Hansen, 20007°F)
o Assumption 'H
» (mda) en: is a martingale difference array (mda) with respect to the current
value of x: and the lagged values of (Xpt,€nt);
» (wlin) €2, satisfies the law of large numbers n™* Ztli’lJ €2, B r(Ee?) =ro? >0
as n — oo, for all r € (0,1];
» (non-stationarity) in Dmyxm X Dmxm X Dm:

Ln-] [n-] [n-]

1 ! 1 12 1 w

F E XntXnty 77 E XntXnt€ty T2, E Xnt€nt | — (M, V,N)
t=1 t=1 t=1

as n — oo, where M and V are a.s. continuous and (except at 0) strictly
positive-definite valued processes, whereas N, conditionally on {V,M}, is a
zero-mean Gaussian process with covariance kernel E{N (n) N (r.)'} = V (n)
(0<n<n<1)
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Bootstrap tests of parameter constancy

@ Asymptotic null distribution of F,:

Fn 2 Too := sup l‘/(r)’l\h(r)f1 N(r)}

relr,7)

i (a)

M(r) =

(M1 N(Q)
(ML)~ M(r)

N (u)
M (r)

: -M

: -M

e With G, (x) := P (F, < x) and G (x) := P (T < x), we have that
Gn(X)_)Goo(X),XER

o For (asymptotically) stationary regressors, it corresponds to the supremum of
a squared tied-down Bessell process (Andrews, 19936C€MA),

@ Quite impossible to simulate critical values for this asymptotic distribution.
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Bootstrap tests of parameter constancy

e Fixed design/wild Bootstrap (Hansen, 20007°F; Goncalves and Kilian, 20047/°F):
@ Used to accommodate possible conditional heteroskedasticity of €,

@ Based on the OLS residuals &;; from the regression of y,,; on x,: and x> a3,
where 7 := arg max,¢[, 7 F| -] is the estimated break fraction.

@ Bootstrap sample:
ye o= 8wy, wy iid. N(0,1)
@ Bootstrap statistic:

Fpi= max .,
relr,r]

where F[“mJ is the F statistic for the auxiliary null that 8* = 0 in the regression

yt* = ﬁ*/Xnt + 0*/Xnt]1{t2 [rn]} + errorﬁt.
@ The associated bootstrap p-value is

P: = P(j:: 2 fﬂ‘{ylaxla"'aynaxn}) = P*(JT: 2 fn)
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Bootstrap tests of parameter constancy

@ The usual bootstrap validity argument requires a ‘weak convergence in proba-
bility' statement like the following

Fr W—*>p Too = SUP {l‘l(r)'l\Nﬂ(r)_1 N(r)}

re(r,7]

@ That is,
Gy (x) = P(Fy < x|{y1,X1s s Yns Xn }) =1 P*(Fp; < x) —p G (X)

However, this case is much more involved.

@ Results such as the previous one do not hold.
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Bootstrap tests of parameter constancy
@ Asymptotic properties of the bootstrap statistic 7,

Theorem
Under Assumption H, it holds that

Fr % sup {NGry (07 N(r)}‘ M,V
relr,7]

where M (r) = M (r) — M (r) M (1) " M (r), N(r) = N(r) = M(r) M (1) N(1).

4

e This contradicts the claim in Hansen (20007°F):
Fr 2y sup LRy (r) 7 R}
relr,7]
which is not correct as

> the limiting distribution of the bootstrap statistic is random; hence the bootstrap
does not estimate the unconditional distribution of the test statistic
» convergence is weak in distribution, not weak in probability.
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Bootstrap tests of parameter constancy

o Simulations in Hansen (2000) suggest that p: % U (0,1). Can we (at least)
save this result?

@ The stated assumption are indeed sufficient for unconditional bootstrap validity

(details in CG):

Theorem

Let the parameter constancy hypothesis Hy hold under assumption H. Then, the
bootstrap based on T, = F, and T = F is asymptotically valid unconditionally.

@ Hence, although Hansen's distributional result on the bootstrap statistic is not
correct, the final claim on bootstrap unconditional validity holds.
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Bootstrap tests of parameter constancy

@ What about bootstrap validity conditional on x,;?
@ Not surprisingly, we need further assumptions

@ Assumption C. Joint with the convergence facts in Assumption H,

Ln-] Ln-] Ln-]
%anfxr/iﬁ # antxﬁtgfm ﬁ antgnt {xat} =w (M, V,N)|(M, V)
t=1 t=1 t=1

@ Then (see CG):

Theorem

Let the parameter constancy hypothesis Hy hold under assumption H and C. Then,
the bootstrap based on T, = F, and T, = F is asymptotically valid conditionally
on Xpt.

That is, pi|{xn} —w U(0,1).
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Concluding remarks

@ As is known, there are many cases where bootstrap statistics have random
limiting distributions

@ This feature invalidates the bootstrap as a mean of estimating the uncondi-
tional distribution of a statistic of interest.

@ Don't panic — the bootstrap can still be (very) useful:

» as a device to estimate a particular conditional distribution of the statistic of
interest (hence, to draw conditional inferences);
> as a device to obtain p-values and confidence intervals.

@ The analysis of bootstrap validity requires non-standard tools (weak conver-
gence of random measures).

o Currently dealing with:

» proxy SVARs when the proxies are weak (with L. Fanelli and G. Angelini);
» solution to the NSV example (if you would like to see it, please join SIdE's 9th
ICEEE in Cagliari!)
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