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Background

(a) Accurate predictions of the con-
ditional mean or a (set of) conditional
moment(s) are often not sufficient when
interest lies in the prediction of inter-
vals or the entire conditional distrib-
ution.

(b) In the finance literature, where
risk management requires tracking of
the entire distribution of a portfolio
or measuring certain distributional as-
pects such as Value-at-Risk, this has
already been widely acknowledged and
conditional quantile models are rou-
tinely used.



(c) Interval prediction has also gained
momentum in the empirical macro-
economic literature. Growth at Risk
(GaR) is the probability that growth,
conditional on current macrofinancial
conditions, will fall below a given thresh-
old. Monitoring of GaR is now a stan-
dard toolkit of the International Mon-
etary Fund macrofinancial surveillance
toolkit, see e.g. Prasad et al. (2019).
Growth in Stress (Gonzalez-Rivera et
al 2019).

(d) Growth vulnerability: downside growth
risk increases with deteriorating finan-
cial conditions, while upside growth
risk is rather stable. This implies that



lower quantile in the output distribu-
tion are more sensible to deteriorating
financial condition.

(e) Adrian, Boyarchenko and Gian-
none (2019) introduce a measure of
growth vulnerability based on the dis-
tance between unconditional and con-
ditional density below and above the
median. Brownless and Souza (2021)
assess GaR out of sample predictive
ability of different quantile models as
well as GARCH models.

(f) Usefulness of GaR monitoring strongly
relies on the validity of models used
to predict conditional quantiles. The



use of systematically biased quantile
prediction will totally hamper the ben-
efits of GaR surveillance.

(g) To evaluate the accuracy of these
interval predictions, numerous tests
for correct specification of paramet-
ric quantile models have already been
proposed. Quantile predictive accu-
racy is then measured in terms of cov-
erage.

(h) Christoffersen (1998) introduced
tests for correct unconditional and con-
ditional coverage probability of quan-
tile models at a pre-specified level τ ∈ (0, 1)

(i) Escanciano and Olmo (2010) con-
sidered an out of sample version for



unconditional coverage test taking into
account also the contribution of esti-
mation error.

(j) Escanciano and Velasco (2010) de-
veloped a test for correct specification
of dynamic conditional quantile mod-
els, uniformly over a compact subset
of quantile ranks τ ∈ T ⊂ (0, 1). Hor-
wath et al (2021) consider a test which
is uniform over the conditioning set,
for given quantile level. Also Li et
al (2021) propose tests for superior
ability holding uniformly over condi-
tioning states.

(k) Giacomini and Komunjer (2010),
Manzan (2015) evaluate quantile pre-
dictive accuracy using the quantile score



principle of Gneiting and Raftery (2007).
However, such a principle delivers an
optimal pointwise prediction of the
variable of interest under a check type
loss function.



In This Paper

(i) This paper goes one step further
and introduces novel tests for pair-
wise and multiple out of sample com-
parisons of parametric conditional quan-
tile models.

(ii) Our tests are based on a com-
parison of possibly overlapping mod-
els in terms of their relative coverage
probability, conditional on the union
of the information sets of the candi-
date models.

(iii) The conditional coverage error is
constructed as the difference between
the implied conditional coverage of
the model and the nominal level τ ∈ T .



(iv) The null hypothesis in the pair-
wise comparison set-up is that both
models have equal expected coverage
error, for a given loss function, over a
given interval.

(vi) Our test statistics are constructed
by computing the mean over differ-
ence of losses from conditional cover-
age errors.

(vii) Two sources of estimation error.
Parametric estimation of the condi-
tional quantile model. Nonparamet-
ric estimation of the conditional cov-
erage probability



(vi) Because of double estimation er-
ror, the limiting distribution have a
rather complicated, non nuisance pa-
rameter free, covariance structure.

(vii) Common solution is the use of
subsampling. In the GaR case, sam-
ples are too small for effectively use
subsampling.

(viii) We suggest a novel wild boot-
strap procedure and establish its first
order validity

(ix) We finally consider a Reality Check
set-up, in which we test whether some
of competing models have more ac-
curate coverage, over some interval,
than the benchmark model.
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SET-UP

CONDITIONAL COVERAGE

Zt is a random vector which contains
a response variable of interest yt and
other observable predictors, Ft = σ(Zs; s ≤
t). The conditional τ-quantile of yt+1

is defined as:

q(τ |Ft) = inf{s : Fyt+1|Ft(s|Ft) ≥ τ},

By construction, for any τL, τU ∈ T with
τL < τU, it holds that:

C ([τL, τU ] ;Ft)
= Pr (q(τL|Ft) ≤ yt+1 ≤ q(τU |Ft)|Ft) = τU − τL

C ([τL, τU ] ;Ft) is the conditional cover-
age wrt information set Ft



CONDITIONAL QUANTILE MODELS

Linear conditional quantile model:

q(τ |Ft) = Z′tβ(τ).

This model comprises the QAR model
as discussed in Koenker and Xiao (2006)

yt+1 = θ0(Ut+1)+θ1(Ut+1)yt+. . .+θp(Ut+1)yt−p+1

or the location scale model:

yt+1 = Z′tδ + (Z′tγ)εt+1,

we have that q(τ |Ft) = Z′tβ(τ) with β(τ) =

δ + γqε(τ) and qε(τ) denoting the τ un-
conditional quantile of the error term
εt+1.

or nonlinear location scale models:

yt+1 = m (Zt, θ1) + σ(Zt, θ2)εt+1



q(τ |Ft) = m (Zt, θ1) + σ(Zt, θ2)qε(τ).

INFORMATION SETS

Xj,t, j = 1, . . . , J, denote the specific in-
formation set of each of the J can-
didate models, which consists of el-
ements of {Zs, s ≤ t}, and let qj(τ |Xj,t)
denote its τ level quantile conditional
on information set Xj,t.

Xt = {X1,t∪ . . .∪XJ,t} to denote the union
of the information sets of all candi-
date models

Coverage for model j

Cj ([τL, τU ] ;Xt)

= Pr
(
qj(τL|Xj,t) ≤ yt+1 ≤ qj(τU |Xj,t)|Xt

)



the conditional coverage error of model
j:

Ej ([τL, τU ] ;Xt)

= Cj ([τL, τU ] ;Xt)− (τU − τL) .

and given that we allow for (dynami-
cally) misspecified models

E
(
Ej ([τL, τU ] ;Xt)

)
6= 0

for some or all models j = 1, . . . , J al-
most surely.



LIMITING DISTRIBUTION

For the pairwise comparison case, sin-
gle interval

H0 : E (L (E1 ([τL, τU ] ;Xt))− L (E2 ([τL, τU ] ;Xt))) = 0

against its negation.

Three cases may arise under H0:

CASE I:

Pr (C1([τL, τU ];Xt) = C2([τL, τU ];Xt)) < 1.

The models are not overlapping

CASE II:

Pr (C1([τL, τU ];Xt) = C2([τL, τU ];Xt)) = 1



and for j = 1, 2:

Pr
(
Cj([τL, τU ];Xt) = τU − τL

)
< 1.

The models are overlapping, but mis-
specified and so both have incorrect
conditional coverage

CASE III: for j = 1, 2

Pr
(
Cj([τL, τU ];Xt) = τU − τL

)
= 1.

The models are overlapping and both
have correct conditional coverage.

Let T = R + P. We use the first R ob-
servations to estimate the parametric
quantile models, q̂j,R(τ |Xj,t) for j = 1, 2.



Then, we need to construct nonpara-
metrically, the conditional coverage,

Ĉj,R,P (τ ;Xt)

=
1

Phd

T−1∑
s=R

1
{
ys+1 ≤ q̂j,R(τ |Xj,t)

}
× 1

f̂X (Xt)
K

(
Xs −Xt

h

)

Let C̃j (τ ;Xt) = F
(
q̂j(τ |Xj,t)

)
and Cj (τ ;Xt) =

F
(
qj(τ |Xj,t)

)
then

Ĉj,R,P (τ ;Xt)− Cj (τ ;Xt)

=
(
Ĉj,R,P (τ ;Xt)− C̃j (τ ;Xt)

)
+
(
C̃j,R,P (τ ;Xt)− Cj (τ ;Xt)

)
The first term captures nonparame-
teric conditional coverage estimation
error. The second term captures pa-
rameteric conditional quantile estima-



tion error. The second term is negli-
gible if P/R→ 0.

The statistics is

ŜP,RP,R(τL, τU)

=
1

P 1/2

T−1∑
t=R

(
L
(
Ê1,R,P ([τL, τU ] ;Xt)

)
−L

(
Ê2,R,P ([τL, τU ] ;Xt)

))
THEOREM 1: Let Assumptions A.1-
A.6 hold. If as P,R → ∞, P/R → π, 0 <

π <∞, Ph2r → 0 and Phd/ ln(P )→∞,

(i) Under H0, in CASE I:

ŜP,R(τL, τU)
d→ G(τL, τU)

where G is a zero mean normal with
covariance Ω (τL, τU) .



(ii) Under H0, in CASE II:

ŜP,R(τL, τU)
d→ G̃(τL, τU)

where G̃ is a Gaussian process with
variance kernel Ω̃ (τL, τU)

(iii) Under H0, in Case III:

ŜP,R(τL, τU) = Op

(
1

R1/2

)
= Op

(
1

P 1/2

)
,

since P and R grow at the same rate

(iv) Under HA, there exists ε > 0 such
that

lim
P,R→∞

Pr
(
ŜP,R > ε

)
= 1.



In Case I, the asymptotic variance takes
into account loss differential, nonpara-
metric and parametric estimation er-
ror. In Case II, only quantile paramet-
ric estimation error matters. In Case
III the statistis is degenerate. Since
L(0) = ∇L(0) = 0, only the second term
in a Taylor expansion is non zero, and
so in Case III,

ŜP,R (τ)

≈ 1

P 1/2

T−1∑
j=R

((
Ĉ1,P

(
ψ̂1,R(τ);Xj

)
− C1

(
ψ†1(τ);Xj

))2

−
(
Ĉ2,P

(
ψ̂2,R(τ);Xj

)
− C2

(
ψ†2(τ);Xj

))2
)



BOOTSTRAP CRITICAL VAL-
UES

We suggest a wild bootstrap proce-
dure in the spirit of the conditional
p-value approach of Hansen (1996).
Inoue (2001) extended Hansen to the
time series case, Corradi and Swan-
son (2002) extend Inoue to parame-
ter estimation error , here we extend
CS to nonparametric estimation er-
ror as well. Importantly, critical val-
ues based on our procedure are first
order asymptotically valid, regardless
of whether we are under CASE I, II or
III.



The wild bootstrap statistic mirror the
linear expansion of the original statis-
tic ŜP,R(τ), i.e.

ŜP,R(τ)

=
1

P 1/2

T−1∑
t=R

1{Xi ∈ X}
((
A1,t(τ)−A2,t(τ)

)
+
(
B1,t(τ)−B2,t(τ)

)
+
(
D1,t(τ)−D2,t(τ)

))
+ op(1)

where A1,t − A2,t(τ) capture the ”true”
difference in coverage error, B1,t(τ) −
B2,t(τ) mimics contribution of nonpara-
metric estimation error and D1,t(τ) −
D2,t(τ) contribution of parametric quan-
tile estimation error, i.e.

A1,t(τ) = L
(
C1

(
ψ†1(τ);Xt

)
− τ

)



B1,t(τ)

= ∇L
(
C1

(
ψ†1(τ);Xt

)
− τ

)
(

1{yt+1 ≤ qτ(ψ†1(τ))} − Ft+1(qτ(ψ†1(τ))|X1,t)
)

D1,t(τ)

= ∇L
(
C1

(
ψ†1(τ);Xt

)
− τ

)
Λ1,P,T (τ)H−1

1,P,T (τ)

X1,t

(
1{yt+1 ≤ qτ(ψ†1(τ);X1,t)} − τ)

)
Thus,

Ŝ∗P,R(τ)

=
1

P 1/2

T−lP−1∑
t=R

εt

t+lP∑
i=t

(
1{Xi ∈ X}

((
Â1,t(τ)− Â2,t(τ)

)
+
(
B̂1,t(τ)− B̂1,t(τ)

)))
+
P 1/2

R

R−lR−1∑
t=1

ηt

t+lR∑
i=t

µ̂1 (τ)
(
D̂1,t(τ)− D̂2,t(τ)

)
.



Theorem 2: Let Assumption A.1-A.6.
hold. Also, as P,R,B → ∞, lR, lP → ∞,
lP/P

1/2 → 0 and lR/R
1/2 → 0. Then:

(i) Under H0, in CASE I and CASE II with
P/R→ π > 0, as P,R,B →∞

lim Pr
(
c∗B,P,R (α/2) < ŜP,R(τ) < c∗B,P,R (1− α/2)

)
= 1− α

(ii) Under H0, in CASE III:

lim Pr
(
c∗B,P,R (α/2) < ŜP,R(τ) < c∗B,P,R (1− α/2)

)
= 1

(iii) Under HA:

lim Pr
(
c∗B,P,R (α/2) < ŜP,R(τ) < c∗B,P,R (1− α/2)

)
= 0

Theorem 2 establishes the first order
validity of the block bootstrap critical



values. In particular, we have a test
of size α in CASE I and II, and a test
of size not larger than α in CASE III.
The key is that ŜP,R(τ) goes to zero
faster than Ŝ∗P,R(τ).

MULTIPLE MODELS AND IN-
TERVALS

The null hypothesis is that none of the com-
peting models has smaller conditional cover-
age error at any of the intervals considered.
The alternative is that at least one competi-
tor outperforms the benchmark on at least
one interval. That is:

HRC
0 : max

j=2,...,J
max

i=1,...,m
E
(
L
(
E1

([
τ i,L, τ i,U

]
;Xjt

))
−L

(
Ej
([
τ i,L, τ i,U

]
;Xjt

)))
1
{
Xjt ∈ X

}
≤ 0



versus it negation. Now,

HRC
0 = ∩Jj=2 ∩mi=1 H

RC
0,i,j

and:

HRC
A = ∪Jj=2 ∪mi=1 H

RC,c
0,i,j

with H
RC,c
0,j,i denoting the complement of HRC

0,j,i.

The number of moment weak inequalities is
given by the product of the number of com-
peting models times the number of intervals,
(J − 1) ×m. We have three cases under the
null

CASE I-M: For at least one interval i ∈ {1, ...,m}
and one model j ∈ {2, ..., J}:

Pr
(
C1([τ iL, τ iU ];Xjt) = Cj([τ iL, τ iU ];Xjt)

)
< 1.



CASE II-M: For all i = 1, ...,m and j = 2, ..., J:

Pr
(
C1([τ iL, τ iU ];Xjt) = Cj([τ iL, τ iU ];Xjt)

)
= 1,

but for at least one interval i ∈ {1, ...,m} and
one model j ∈ {2, ..., J}:

Pr
(
Cj([τ iL, τ iU ];Xjt) = τ iU − τ iL

)
< 1.

CASE III-M: For all i = 1, ...,m and j = 2, ..., J

Pr
(
Cj([τ iL, τ iU ];Xjt) = τ iU − τ iL

)
= 1.

The statistic reads as:

Ŝ
max,max
P,R =

J∑
j=2

m∑
i=1

(
max

{
0, ŜP,R([τ iL, τ iU ]; j)

})2

Theorem 4: Let Assumptions A.1-A.6 hold.
Then:

(i) Under HRC
0 , in CASE I-M:

Ŝ
max,max
P,R

d→
m(J−1)∑
k=1

(max {0, Zk})2 ,



where Zk is the k-th element of a m(J − 1)-
dimensional zero mean normal random vector
with variance covariance matrix equal to V

(ii) Under HRC
0 , in CASE II-M with P/R →

π > 0:

Ŝ
max,max
P,R

d→
m(J−1)∑
k=1

(
max

{
0, Z̃k

})2
,

where Z̃k is the k-th element of a m(J − 1)-
dimensional zero mean normal random vector
with variance covariance matrix equal to Ṽ ).

(iii) Under HRC
0 , in CASE III-M:

Ŝ
max,max
P,R = Op

(
1

R1/2

)



(iv) Under HRC
A , there exists ε > 0 such that:

lim
P,R→∞

Pr
(

1

P 1/2
Ŝ

max,max
P,R > ε

)
= 1.

We now introduce the wild bootstrap coun-
terpart of Ŝ

max,max
P,R for k = (j − 2)m + i, j =

1, ..., J, i = 1, ...,m let Ŝ∗P,R,k be the analog
of Ŝ∗P,R when comparing model 1 and
j over interval i.

Ŝ∗P,R,1
...

Ŝ∗P,R,m(J−1)



=


Ŝ∗P,R([τ1L, τ1U ]; 2)

...

Ŝ∗P,R([τmL, τmU ]; J − 1)

 .
By using the same draws of εt and ηt across
intervals and models, the correlation present
in the data is fully preserved.



The bootstrap statistic reads as,

Ŝ
∗max,max
P,R

=
m(J−1)∑
k=1

(
max

{
0, Ŝ∗P,R,k1

{
ŜP,R,k ≥ −v̂kk,P,RκP

}})2
,

with v̂2
kk,P,R being an estimator of the vari-

ance of ŜP,R,k, kP → ∞ as P → ∞. When
ŜP,R,k < −v̂k,kκP , it holds that

max
{

0, Ŝ∗P,R,11
{
ŜP,R,k ≥ −v̂kk,P,RκP

}}
= 0, so

that sufficiently negative moment conditions
do not contribute to the bootstrap statistic.

Theorem 5: Let Assumptions A.1-A.6 hold.
Also, as P,R,B → ∞, lR, lP → ∞, lP/P 1/2 → 0

and lR/R
1/2 → 0, κP

log logP → ∞ and κP/P
1/2 →

0. Then:



(i) (a) Under HRC
0 , in CASE I-M P/R→ π > 0:

lim
B,R,P→∞

Pr
(
Ŝ

max,max
P,R ≥ c∗max,max

B,R,P,1−α
)
≤ α.

(b) if in addition for some interval/model the
two models have equal coverage error,

lim
B,R,P→∞

Pr
(
Ŝ

max,max
P,R ≥ c∗max,max

B,R,P,1−α
)

= α.

(ii) Under HRC
0 , in CASE II-M:

lim
B,R,P→∞

Pr
(
Ŝ

max,max
P,R ≥ c∗max,max

B,R,P,1−α
)

= α.

(iii) Under HRC
0 , in CASE III-M:

lim
B,R,P→∞

Pr
(
Ŝ

max,max
P,R ≥ c∗max,max

B,R,P,1−α
)

= 0

(iv) Under HRC
A :

lim
B,R,P→∞

Pr
(
Ŝ

max,max
P,R ≥ c∗max,max

B,R,P,1−α
)

= 1.



MONTE CARLO SIMULATION

DGP

yt+1 = β1X1,t + β2X2,t +
∣∣∣1 + β3(X1,t +X2,t)

∣∣∣ et+1

where β3 = 0 gives a simple linear model with
error term et+1 whereas β3 6= 0 allows the
conditional variance to be nonlinear in X1,t

and X2,t, quantile regression give raise to mis-
specification.

Xj,t = ρXj,t−1 + vj,t for j = 1, 2, and vj,t are
generated as i.i.d.N(0, 1 − ρ2). For j = 1, 2 we

write this as:

qτ(β†j(τ);Xj,t) = β
†
0j(τ) + β

†
1j(τ)Xj,t



where β
†
j(τ) =

(
β
†
0j(τ), β

†
1j(τ)

)′
.

DGP1: (β1, β2, β3) = (1, 1, 0)−CASE 1

DGP2: (β1, β2, β3) = (0, 0, 1)−CASE II

DGP3: (β1, β2, β3) = (0, 0, 0) CASE III

DGP4: (β1, β2, β3) = (0, 1, 0) POWER

Quadratic Loss, T = 240, 480, 960, P = R, τ =

0.1, 0.2, 0.3



EMPIRICAL ILLUSTRATION

We apply our test to evaluate the out-of-
sample specification of the recent GaR frame-
work of Adrian et al. (2019). We look at
lower part of the distribution, τ = 0.1, 0.2, 0.3.

We want to predict quantile of GDP/IP using
QR.

Data 1971-2019, quarterly for GDP and monthly
for IP. T = 196 (quarterly) and T = 588 (monthly).
P = R

Benchmark model is QAR(1)+NFCI (National
Financial Condition Indicator). Candidates
are



QAR(1)+SV stock market and volatility, from
Brownless and Sousa (2021)

QAR(1)+GF Global Real Economic Activity
Factor

QAR(1)+TS Term Spread 10yrs-1yes trea-
sury rate

QAR(1)+HP House Prices



Table 1: Rejection Rates: Pairwise - Single Quantile Level

T = 240 DGP1 DGP2 DGP3 DGP4
α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

l = 1 τ = 0.1 0.0605 0.0330 0.0345 0.0160 0.0170 0.0055 0.1096 0.0535
τ = 0.2 0.0740 0.0355 0.0235 0.0090 0.0105 0.0045 0.2726 0.1336
τ = 0.3 0.0755 0.0360 0.0200 0.0080 0.0140 0.0055 0.5418 0.3122

l = 2 τ = 0.1 0.0545 0.0230 0.0265 0.0130 0.0175 0.0040 0.1076 0.0430
τ = 0.2 0.0600 0.0295 0.0220 0.0110 0.0130 0.0070 0.2766 0.1276
τ = 0.3 0.0660 0.0330 0.0205 0.0080 0.0140 0.0055 0.4602 0.2841

l = 5 τ = 0.1 0.0555 0.0215 0.0330 0.0145 0.0165 0.0030 0.1086 0.0450
τ = 0.2 0.0540 0.0265 0.0215 0.0095 0.0125 0.0055 0.2221 0.1116
τ = 0.3 0.0550 0.0255 0.0175 0.0065 0.0125 0.0040 0.3912 0.2016

T = 480 DGP1 DGP2 DGP3 DGP4
α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

l = 1 τ = 0.1 0.0780 0.0395 0.0265 0.0120 0.0100 0.0025 0.2756 0.1746
τ = 0.2 0.0815 0.0415 0.0315 0.0135 0.0185 0.0050 0.7809 0.6338
τ = 0.3 0.0735 0.0340 0.0230 0.0105 0.0105 0.0050 0.9700 0.9325

l = 2 τ = 0.1 0.0570 0.0355 0.0260 0.0110 0.0085 0.0010 0.2391 0.1341
τ = 0.2 0.0765 0.0380 0.0260 0.0130 0.0150 0.0055 0.7129 0.4942
τ = 0.3 0.0660 0.0315 0.0225 0.0115 0.0135 0.0055 0.9625 0.9125

l = 5 τ = 0.1 0.0540 0.0190 0.0290 0.0115 0.0075 0.0020 0.2226 0.1196
τ = 0.2 0.0670 0.0330 0.0245 0.0100 0.0185 0.0070 0.6033 0.4112
τ = 0.3 0.0495 0.0215 0.0220 0.0075 0.0105 0.0045 0.9515 0.8199

T = 960 DGP1 DGP2 DGP3 DGP4
α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

l = 1 τ = 0.1 0.0850 0.0410 0.0340 0.0175 0.0115 0.0020 0.6443 0.4817
τ = 0.2 0.1011 0.0560 0.0375 0.0140 0.0115 0.0035 0.9915 0.9685
τ = 0.3 0.1031 0.0540 0.0310 0.0125 0.0100 0.0025 1.0000 1.0000

l = 2 τ = 0.1 0.0640 0.0270 0.0300 0.0130 0.0130 0.0025 0.5958 0.3962
τ = 0.2 0.0895 0.0495 0.0365 0.0155 0.0140 0.0045 0.9875 0.9425
τ = 0.3 0.0885 0.0520 0.0385 0.0110 0.0085 0.0020 1.0000 1.0000

l = 5 τ = 0.1 0.0660 0.0295 0.0280 0.0125 0.0130 0.0020 0.5138 0.3177
τ = 0.2 0.0880 0.0485 0.0400 0.0155 0.0145 0.0045 0.9790 0.9340
τ = 0.3 0.0855 0.0475 0.0390 0.0150 0.0105 0.0030 1.0000 0.9995
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Table 2: Rejection Rates: Pairwise - Multiple Quantile Levels

T = 240 DGP1 DGP2 DGP3 DGP4
α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

l = 1 0.0670 0.0340 0.0280 0.0105 0.0115 0.0040 0.6083 0.3892
l = 2 0.0555 0.0265 0.0300 0.0115 0.0125 0.0045 0.5593 0.3542
l = 5 0.0550 0.0265 0.0230 0.0105 0.0130 0.0050 0.5768 0.3437

T = 480 DGP1 DGP2 DGP3 DGP4
α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

l = 1 0.0975 0.0555 0.0270 0.0095 0.0110 0.0035 0.9775 0.9505
l = 2 0.0805 0.0415 0.0245 0.0090 0.0130 0.0050 0.9780 0.9265
l = 5 0.0675 0.0335 0.0240 0.0090 0.0130 0.0070 0.9665 0.9075

T = 960 DGP1 DGP2 DGP3 DGP4
α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

l = 1 0.1086 0.0565 0.0435 0.0215 0.0100 0.0025 1.0000 1.0000
l = 2 0.0890 0.0455 0.0410 0.0190 0.0145 0.0025 1.0000 1.0000
l = 5 0.0915 0.0495 0.0470 0.0240 0.0145 0.0030 1.0000 1.0000

Notes: The cases of DGP1 through DGP4 correspond to (β1, β2, β3) equal to (1, 1, 0), (0, 0, 1), (0, 0, 0)
and (0, 1, 0) in (??). In this pairwise model set-up we have the non-degenerate CASE I under DGP1, the
overlapping misspecified CASE II under DGP2, the strictly overlapping CASE III under DGP3 and we
are under the alternative for DGP4.
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Table 3: Rejection Rates: Multiple Models - Single Quantile Level - Bench-
mark X1,t

T = 240 DGP1 DGP2 DGP3 DGP4
α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

l = 1 0.2561 0.1351 0.0155 0.0050 0.0045 0.0000 0.5633 0.3492
l = 2 0.2176 0.1151 0.0110 0.0045 0.0040 0.0005 0.5933 0.3497
l = 5 0.1946 0.0955 0.0120 0.0050 0.0045 0.0005 0.5203 0.3047

T = 480 DGP1 DGP2 DGP3 DGP4
α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

l = 1 0.7794 0.6078 0.0160 0.0035 0.0045 0.0010 0.9680 0.9160
l = 2 0.8129 0.5988 0.0130 0.0045 0.0040 0.0010 0.9760 0.9245
l = 5 0.7399 0.5198 0.0130 0.0030 0.0055 0.0010 0.9730 0.8829

T = 960 DGP1 DGP2 DGP3 DGP4
α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

l = 1 0.9985 0.9945 0.0320 0.0105 0.0030 0.0000 1.0000 1.0000
l = 2 0.9975 0.9835 0.0275 0.0105 0.0030 0.0000 1.0000 1.0000
l = 5 0.9975 0.9800 0.0310 0.0110 0.0025 0.0000 1.0000 1.0000

Notes: The cases of DGP1 through DGP4 correspond to (β1, β2, β3) equal to (1, 1, 0), (0, 0, 1), (0, 0, 0)
and (0, 1, 0) in (??). In this multiple model set-up with X1,t in the benchmark model and X2,t and Xt

being used in the others, the benchmark is worse than the Xt model under DGP1, worse than both
models under DGP4, and overlapping under DGP2 and DGP3.
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Table 4: QAR(1)+NFCI vs. QAR(1)+SV - Pairwise Comparison - Single
Quantile Level

Real GDP Growth IP Growth

sQ = 1 sQ = 4 sM = 3 sM = 12
Stat p-value Stat p-value Stat p-value Stat p-value

l = 1 τ = 0.1 0.5955 0.4052 -0.0157 0.9075 0.6611 0.2711 0.0333 0.8904
τ = 0.2 0.7311 0.3662 -0.0033 0.9705 1.4144 0.0420 0.5089 0.4752
τ = 0.3 1.9363 0.1871 0.2444 0.7764 1.2296 0.0200 0.3686 0.7194

l = 2 τ = 0.1 - 0.3472 - 0.9375 - 0.2811 - 0.9275
τ = 0.2 - 0.3442 - 0.9775 - 0.0510 - 0.5423
τ = 0.3 - 0.1961 - 0.8014 - 0.0240 - 0.7504

l = 5 τ = 0.1 - 0.3612 - 0.9375 - 0.3022 - 0.8774
τ = 0.2 - 0.3002 - 0.9755 - 0.0570 - 0.5773
τ = 0.3 - 0.2241 - 0.8114 - 0.0460 - 0.7764

Table 5: Multiple model, multiple quantile test

Real GDP Growth IP Growth

sQ = 1 sQ = 4 sM = 3 sM = 12
Stat p-value Stat p-value Stat p-value Stat p-value

l = 1 6.4694 0.3412 0.0597 0.9490 8.9396 0.0260 0.4783 0.6193
l = 2 - 0.3332 - 0.9620 - 0.0265 - 0.6353
l = 5 - 0.3432 - 0.9535 - 0.0410 - 0.6728
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