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Introduction

I Knowing the prevalence of the COVID-19 infection in a population is very
important for public health.

I But the fraction of people who test positive provides a biased picture...

I ...as the sample of those tested underrepresents the asymptomatic and
paucisymptomatic.

I Several countries are carrying out large population surveys to ascertain the
fraction of the population that has been infected by the virus.

I These surveys are costly, complicated to carry out, plagued by refusal to
participate, and take time to complete.

I It is useful to come up with easy to implement – but perhaps less accurate –
estimates of the prevalence of the infection based on readily available data.
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Point vs. period prevalence

I Two distinct concepts of prevalence, with different meanings and usefulness:

I point prevalence is the fraction of people who, at a given point in time,
are infected (and therefore infectious);

I period prevalence is the fraction of people who have been infected during
a given period; in particular, the fraction of people who were ever infected.

I Point prevalence is more useful to monitor the risk of transmitting the infection,
period prevalence is more useful for reporting purposes and to monitor the risk
of being infected.

I A related paper by Manski and Molinari (2020) focuses on period prevalence.

I We focus instead on point prevalence.
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Definitions and basic assumptions

I A person can be infected only once, is infectious as long as infected, and is no
longer infectious when recovered.

I Time is measured in days. Population is constant.

I Id : binary random variable equal to 1 if a person is infected on day d , and to 0
otherwise.

I We are interested in P(Id = 1). A person who is infected at d may have become
infected before d , and some of those who became infected before d may have
recovered (or died) by d .

I Td : binary random variable equal to 1 if a person has been first tested on day d ,
and to 0 otherwise.

I Pd : binary random variable equal to 1 if a person has first received a positive
test result on day d , and to 0 otherwise.

I Assume that nobody is tested more than once, and that test results are
immediately available. Under these assumptions, Pd = 1⇒ Td = 1.

I We discuss later how to transform the data to approximate these assumptions.
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Framework

I Drop the time suffix for simplicity.

I By the Law of Total Probability

P(I = 1) = P(I = 1|T = 1) P(T = 1) + P(I = 1|T = 0) P(T = 0).

I We observe P(T = 1) and P(T = 0) = 1− P(T = 1), but P(I = 1|T = 1) and
P(I = 1|T = 0) are unobserved.

I Thus, to estimate P(I = 1), we need information on both of them.

I First, consider the operational properties of viral tests.
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Operational properties of viral tests

I Probability of false positives or Type-I error:

P(P = 1|I = 0,T = 1)

I There is a general consensus in the medical profession that the probability of
Type-I error is negligible. Thus we assume

P(P = 1|I = 0,T = 1) = 0.

I Probability of false negatives or Type-II error:

β = P(P = 0|I = 1,T = 1).

I The general consensus is that β is nonnegligible and largely reflects issues with
specimen collection (sample collected too early or too late, contaminated, or
stored for too long).

I The available health literature suggests a range for β between .02 and .40, with
a narrower range between .10 and .30 more often quoted.
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Infection rate among the tested

I Under the assumption that P(P = 1|I = 0,T = 1) = 0, we show that

P(I = 1|T = 1) =
P(P = 1|T = 1)

1− β
,

where we used the fact that P = 1⇒ T = 1.

I This result expresses P(I = 1|T = 1) as a function of two quantities:

I P(P = 1|T = 1) which is observed;

I β for which we can make an educated guess based on medical knowledge.

I If β = 0, then P(I = 1|T = 1) = P(P = 1|T = 1).
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Infection rate among the untested

I Because swabs are mainly taken from subjects who have visible symptoms or are
suspected of exposure to the infection, it is plausible to assume that

P(I = 1|T = 0) ≤ P(I = 1|T = 1).

I If tests were random, the fraction of the infected would be the same among the
tested and the untested.

I If the tested sample is biased towards those with higher infection risk, then
P(I = 1|T = 0) < P(I = 1|T = 1).

I Let P(I = 1|T = 1) > 0 and define

λ =
P(I = 1|T = 0)

P(I = 1|T = 1)
,

I Thus
P(I = 1|T = 0) = λ P(I = 1|T = 1),

with 0 < λ ≤ 1.
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The estimating equation

I Putting all together, we have:

P(I = 1) = P(I = 1|T = 1) P(T = 1) + P(I = 1|T = 0) P(T = 0)

= P(I = 1|T = 1) P(T = 1) + λP(I = 1|T = 1) P(T = 0)

= P(I = 1|T = 1) [P(T = 1) + λ P(T = 0)]

=
P(P = 1|T = 1)

1− β
[P(T = 1) + λ P(T = 0)] ,

with P(T = 0) = 1− P(T = 1).

I This shows that P(I = 1) is an increasing function of P(P = 1|T = 1) and
P(T = 1), which we can measure in the data, and an increasing function of β
and λ, for which we have a plausible range of values.
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I This shows that P(I = 1) is an increasing function of P(P = 1|T = 1) and
P(T = 1), which we can measure in the data, and an increasing function of β
and λ, for which we have a plausible range of values.
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Can we say more about λ?

I Assume (wlog) that the test is perfect, but distinguish those who are
symptomatic (S = 1) from those who are not (S = 0).

I Further assume that the infection rate among the asymptomatic,
P(I = 1|S = 0), is positive and smaller than among the symptomatic, that is:

µ =
P(I = 1|S = 1)

P(I = 1|S = 0)
≥ 1.

I Let n = P(T = 1) be the fraction of the population that is tested,
π = P(S = 1) the fraction of the population that is symptomatic, and
p = P(S = 1|T = 1) the fraction of the symptomatic among the tested.

I As a measure of the bias implicit in the testing protocol, define

γ =
p

π
.

I If the sample is biased towards the symptomatic, then p > π, that is, γ > 1.
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The structure of λ
I Among the tested cases, the probability of being infected is:

P(I = 1|T = 1) = P(I = 1|S = 1,T = 1) p + P(I = 1|S = 0,T = 1)(1− p).

I Our key assumption is that, conditioning on symptomatology, the probability of
being infected is the same in the tested sample and the population:

P(I = 1|S = s,T = 1) = P(I = 1|S = s), s = 0, 1.

Under this assumption,

P(I = 1|T = 1) = [(µ− 1)p + 1] P(I = 1|S = 0).

I Among the untested cases, the probability of being infected can be shown to be:

P(I = 1|T = 0) =
(µ− 1)(π − np) + 1− n

1− n
P(I = 1|S = 0).

I Combining these two results, gives:

λ =
P(I = 1|T = 0)

P(I = 1|T = 1)
=

(µ− 1)(1− nγ)π + 1− n

(1− n)[γπ(µ− 1) + 1]
.

I Information on n, γ, µ, or π may help narrow the range of values for λ and
therefore for P(I = 1). In particular, λ = 1 when γ = 1.
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Calibrating λ

I As an example, consider the data from Vo’, the small town with the first
COVID-19 death in Italy, that conducted an almost complete testing of its
population between late February and early March, 2020.

I From these data we can set π = .067 and µ = 17.9.

I We also set n = .0004 (the testing rate in Italy on June 20, 2020).

I Given these values, the next slide shows how λ would vary with the bias γ in the
testing protocol when µ = 17.9.

I Specifically, λ would vary between .11 (when γ = 1/.067 = 15) and .65 (when
γ = 2, i.e., the sample fraction of the symptomatic is twice the population
fraction).
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Contour plot of λ as a function of γ and µ
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Detour on point vs. period prevalence

I Both concepts are useful. Can both be recovered from the available data?

I Assume that the population is of constant size N, the infection lasts at most
2 periods, nobody dies, a fraction δ of the newly infected recovers after 1 period
and the remaining 1− δ after 2 period.

I Hence, in any day d ≥ 1, the number of the currently infected is

Id = I∗d + (1− δ)I∗d−1,

where I∗d are the newly infected on day d and I∗0 = 0.

I Point and period prevalence at time d in the population are, respectively,

αd =
Id
N

=
I∗d + (1− δ)I∗d−1

N
, ηd =

∑d
i=1 I

∗
i

N
.

I While αd is obtained from the currently infected (who might have been first
infected in previous periods), ηd is constructed by adding-up all the newly
infected up to day d .
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Point vs. period prevalence (cntd.)

I The number of people who just recovered in period d is

Rd = δI∗d−1 + (1− δ)I∗d−2,

with R1 = 0 and R2 = δI∗1 , while the total number of people who recovered
from past infections is

RTd =
d∑

i=1

Ri .

I It can be shown that

d∑
i=1

I∗i = Id +
d∑

i=1

Ri = Id + RTd .

Therefore

ηd = αd +
RTd

N
.

I This is the link between the two concepts in the population: starting from point
prevalence, to obtain period prevalence we need data on current and past
recoveries.
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From population to samples

I We do not observe the population, but only a sample drawn from it.

I Consider a simple example in which the virological test is perfect and sampling
is at random.

I None of these assumptions is realistic, but they provide a tractable and useful
benchmark.

I This example is also of practical interest as some countries are embarking on
random sampling of the general population.

(15/32)



From population to samples

I We do not observe the population, but only a sample drawn from it.

I Consider a simple example in which the virological test is perfect and sampling
is at random.

I None of these assumptions is realistic, but they provide a tractable and useful
benchmark.

I This example is also of practical interest as some countries are embarking on
random sampling of the general population.

(15/32)



From population to samples

I We do not observe the population, but only a sample drawn from it.

I Consider a simple example in which the virological test is perfect and sampling
is at random.

I None of these assumptions is realistic, but they provide a tractable and useful
benchmark.

I This example is also of practical interest as some countries are embarking on
random sampling of the general population.

(15/32)



From population to samples

I We do not observe the population, but only a sample drawn from it.

I Consider a simple example in which the virological test is perfect and sampling
is at random.

I None of these assumptions is realistic, but they provide a tractable and useful
benchmark.

I This example is also of practical interest as some countries are embarking on
random sampling of the general population.

(15/32)



Example

I On any day d , a random sample of size nd is tested. Let Pd be the number of
people who test positive in the sample. Since E[Pd ] = ndαd , an unbiased
estimate of point prevalence is α̂d = Pd/nd .

I To estimate period prevalence we need data on the number of people in the
sample who recovered from past infections.

I On day d , they are (on average) nd RTd/N. Dividing by nd gives an unbiased
estimate of RTd/N; adding α̂d , gives an unbiased estimate of period prevalence.

I Notice however that, to identify the recovered, the subjects in the sample should
be tested with a serological test to detect past infections.

I This is not how the available data are constructed.

I The available data only keep track of future recoveries among the currently
infected, but we do not know whether those who test negative at a point in
time had been infected in the past and are now recovered.

I Having a biased sample would only add a further layer of difficulty.
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I Notice however that, to identify the recovered, the subjects in the sample should
be tested with a serological test to detect past infections.

I This is not how the available data are constructed.

I The available data only keep track of future recoveries among the currently
infected, but we do not know whether those who test negative at a point in
time had been infected in the past and are now recovered.

I Having a biased sample would only add a further layer of difficulty.
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Data

I Daily time series collected by the Dipartimento della Protezione Civile (DPC)

from the COVID-19 surveillance system on:

I total number of confirmed cases (“totale casi”) and number of confirmed
new cases (“nuovi positivi”), from February 24, 2020;

I total number of swabs (“tamponi”), from February 24, 2020;

I total number of tested cases (“casi testati”), from April 19, 2020.

I The most recent date is July 1, 2020.

I Case definitions follow the criteria established by the ECDPC, which in turn
follow those published and updated by the WHO.

I Population data from Istat: Resident population as of January 1, 2019.
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Remarks

I The series of new confirmed cases gives the number of subjects who first test
positive on day d , i.e., the number of subjects for whom Pd = 1. They may
have become infected on a previous date.

I The number of swabs overstates the number of people actually tested because
many subjects are tested repeatedly.

I The series of tested cases records the total number of subjects from whom a
swab was taken, thus eliminating the duplications contained in the swabs series.

I Besides duplications, the timing between swabs and tests is not fully aligned, as
the number of tests results obtained on day d include results from swabs taken
before d and excludes swabs taken in d for which results are not yet available.

I To take care of this (and to remove day-of-week effects), we use 7-day moving
averages.

I The series of tested cases in one of the regions (Lazio) has a clear break on
April 24, 2020, most likely because of an initial reporting error. We therefore
consider the data starting from April 25, 2020.
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Estimation

I To estimate P(I = 1) we first compute P(P = 1|T = 1) as the ratio between
the centered 7-day moving average, or MA(7), of the confirmed new cases and
the MA(7) of the difference in tested cases.

I We also compute P(T = 1) as the ratio between the MA(7) of the difference in
tested cases and the resident population.

I As already mentioned, medical expertise suggests a relatively narrow range for
β, say between .10 and .30. To be conservative we consider the wider range
from .01 to .50, but note that a test with β as large as .50 is virtually useless
(and dangerous!).

I As to λ we conservatively allow for a wide range, from .01 to .99. The data
from Vo’ would suggest a narrower range, between .10 and .65.

(19/32)



Estimation

I To estimate P(I = 1) we first compute P(P = 1|T = 1) as the ratio between
the centered 7-day moving average, or MA(7), of the confirmed new cases and
the MA(7) of the difference in tested cases.

I We also compute P(T = 1) as the ratio between the MA(7) of the difference in
tested cases and the resident population.

I As already mentioned, medical expertise suggests a relatively narrow range for
β, say between .10 and .30. To be conservative we consider the wider range
from .01 to .50, but note that a test with β as large as .50 is virtually useless
(and dangerous!).

I As to λ we conservatively allow for a wide range, from .01 to .99. The data
from Vo’ would suggest a narrower range, between .10 and .65.

(19/32)



Estimation

I To estimate P(I = 1) we first compute P(P = 1|T = 1) as the ratio between
the centered 7-day moving average, or MA(7), of the confirmed new cases and
the MA(7) of the difference in tested cases.

I We also compute P(T = 1) as the ratio between the MA(7) of the difference in
tested cases and the resident population.

I As already mentioned, medical expertise suggests a relatively narrow range for
β, say between .10 and .30. To be conservative we consider the wider range
from .01 to .50, but note that a test with β as large as .50 is virtually useless
(and dangerous!).

I As to λ we conservatively allow for a wide range, from .01 to .99. The data
from Vo’ would suggest a narrower range, between .10 and .65.

(19/32)



Estimation

I To estimate P(I = 1) we first compute P(P = 1|T = 1) as the ratio between
the centered 7-day moving average, or MA(7), of the confirmed new cases and
the MA(7) of the difference in tested cases.

I We also compute P(T = 1) as the ratio between the MA(7) of the difference in
tested cases and the resident population.

I As already mentioned, medical expertise suggests a relatively narrow range for
β, say between .10 and .30. To be conservative we consider the wider range
from .01 to .50, but note that a test with β as large as .50 is virtually useless
(and dangerous!).

I As to λ we conservatively allow for a wide range, from .01 to .99. The data
from Vo’ would suggest a narrower range, between .10 and .65.

(19/32)



Table 1: P(T = 1) and P(P = 1|T = 1), June 20, 2020

Region P(T = 1) P(P = 1|T = 1)
Abruzzo .0005 .0007
Basilicata .0005 .0000
Calabria .0004 .0022
Campania .0001 .0041
Emilia-Romagna .0008 .0063
Friuli Venezia Giulia .0008 .0011
Lazio .0004 .0038
Liguria .0004 .0106
Lombardia .0006 .0273
Marche .0004 .0027
Molise .0007 .0035
Piemonte .0004 .0151
Puglia .0003 .0014
Sardegna .0005 .0007
Sicilia .0003 .0008
Toscana .0004 .0026
Trentino-Alto Adige .0008 .0069
Umbria .0005 .0003
Valle d’Aosta .0006 .0035
Veneto .0005 .0018
Italy .0004 .0078
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Remarks

I Table 1: P(T = 1) and P(P = 1|T = 1), June 20, 2020.

I While P(T = 1) does not vary much across regions, differences in
P(P = 1|T = 1) are large reflecting substantial regional differences in both the
intensity of the epidemic and the bias in testing.

I P(T = 1) highest in Emilia-Romagna, Friuli Venezia Giulia, and Trentino-Alto
Adige, lowest in Campania.

I P(P = 1|T = 1) highest in the North-West (Liguria, Piedmont, and especially
Lombardy), lowest in Basilicata and Umbria.

I Very weak positive correlation between P(P = 1|T = 1) and P(T = 1).
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Table 2: Estimated P(I = 1) for different values of (λ, β)

β
λ .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

.01 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.05 .000 .000 .000 .000 .000 .001 .001 .001 .001 .001 .001

.10 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .002

.15 .001 .001 .001 .001 .001 .002 .002 .002 .002 .002 .002

.20 .002 .002 .002 .002 .002 .002 .002 .002 .003 .003 .003

.25 .002 .002 .002 .002 .002 .003 .003 .003 .003 .004 .004

.30 .002 .002 .003 .003 .003 .003 .003 .004 .004 .004 .005

.35 .003 .003 .003 .003 .003 .004 .004 .004 .005 .005 .005

.40 .003 .003 .003 .004 .004 .004 .004 .005 .005 .006 .006

.45 .004 .004 .004 .004 .004 .005 .005 .005 .006 .006 .007

.50 .004 .004 .004 .005 .005 .005 .006 .006 .007 .007 .008

.55 .004 .005 .005 .005 .005 .006 .006 .007 .007 .008 .009

.60 .005 .005 .005 .006 .006 .006 .007 .007 .008 .009 .009

.65 .005 .005 .006 .006 .006 .007 .007 .008 .008 .009 .010

.70 .006 .006 .006 .006 .007 .007 .008 .008 .009 .010 .011

.75 .006 .006 .007 .007 .007 .008 .008 .009 .010 .011 .012

.80 .006 .007 .007 .007 .008 .008 .009 .010 .010 .011 .013

.85 .007 .007 .007 .008 .008 .009 .010 .010 .011 .012 .013

.90 .007 .007 .008 .008 .009 .009 .010 .011 .012 .013 .014

.95 .008 .008 .008 .009 .009 .010 .011 .011 .012 .014 .015

.99 .008 .008 .009 .009 .010 .010 .011 .012 .013 .014 .015
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Remarks

I Table 2: Estimated P(I = 1) for different values of (λ, β), June 20, 2020.

I P(I = 1) increases with both λ and β, ranging between 0 for (λ, β) = (0, 0) and
.015 for (λ, β) = (.99, .50).

I Given the population size of 60.4 million, the upper bound corresponds to about
900 thousands infected people as of June 20, 2020.

I In red, estimated P(I = 1) for the restricted range .10 ≤ λ ≤ .65 and
.10 ≤ β ≤ .30.

I Estimated P(I = 1) ranges between .001 when (λ, β) = (.10, .10) and .007
when (λ, β) = (.65, .30), corresponding to a range between 60 and 423
thousands infected people as of June 20, 2020.
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Table 3: Estimated P(I = 1) for different values of (λ, β)

(λ, β)
Region (.25, .10) (.50, .20) (.75, .30)
Abruzzo .000 .000 .001
Basilicata .000 .000 .000
Calabria .001 .001 .002
Campania .001 .003 .004
Emilia-Romagna .002 .004 .007
Friuli Venezia Giulia .000 .001 .001
Lazio .001 .002 .004
Liguria .003 .007 .011
Lombardia .008 .017 .029
Marche .001 .002 .003
Molise .001 .002 .004
Piemonte .004 .009 .016
Puglia .000 .001 .001
Sardegna .000 .000 .001
Sicilia .000 .000 .001
Toscana .001 .002 .003
Trentino-Alto Adige .002 .004 .007
Umbria .000 .000 .000
Valle d’Aosta .001 .002 .004
Veneto .001 .001 .002
Italy .002 .005 .008
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Figure 1: Estimated P(I = 1) by region
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Figure 2: P(T = 1) and P(P = 1|T = 1) over time
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Figure 3: Estimated P(I = 1) over time
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Figure 4: Estimated P(I = 1) at different dates for β = .20
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Remarks

I Figure 2: P(T = 1) and P(P = 1|T = 1) over time.

I Figure 3: Estimated P(I = 1) over time.

I The observed decline reflects the fact that, while β is likely constant, P(T = 1)
and especially P(P = 1|T = 1) fall.

I It may also reflect a shrinking testing bias (increasing values of γ), which implies
λ increasing towards 1.

I Figure 4: Estimated P(I = 1) at different dates for β = .20. The horizontal lines
correspond to .015 and .005, the estimated values of P(I = 1) in mid-May and
mid-June.
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Figure 5: Estimated P(I = 1) by region and over time
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Remarks

I Figure 5: Estimated P(I = 1) by region and over time.

I Erratic behavior of P(I = 1) in regions with a small number of cases (Basilicata,
Calabria, Molise, Trentino-Alto Adige, Valle d’Aosta).
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Conclusions

I We showed how to use readily available data to obtain quick estimates of the
point prevalence of the infection, an important gauge of its evolution.

I Our estimates depend on a few clearly identified features of the epidemic, about
which it is possible to gather information. The latter, in turn, can be used to
narrow the range of the estimates.

I We also showed that another important statistic – the period prevalence of the
infection – is harder to pin down with the data currently available, and we
clarified which additional information is needed to obtain such an estimate.

I Finally, we applied our method to data from Italy.

I In some Italian regions the point prevalence might be still large enough to
suggest caution in removing all restrictions on mobility.

I The health authorities, by incorporating their more detailed and disaggregated
information into our framework, could obtain a quickly updated gauge of the
evolution of the infection, which might help them to contain it.
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