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1. The (sharp) RDD in pills 

 

Individuals in a target population are either exposed – D=1 – or unexposed – D=0 – to an 

intervention. The target is measuring the average causal effect of exposure on an outcome Y using 

a sample of individuals from the target population. 

 

Y1 and Y0 are the potential outcomes under exposure/non exposure to the intervention.  

 

Y = Y0 + (Y1 - Y0)D  is the outcome we observe in the data. 

 

The RDD selection rule. To select individuals into exposure they are ranked according to a 

continuous observable variable X - the running variable, predetermined to the intervention.  

 

f(x) is the pdf of X.   

 

 



Then, the exposure status of individuals deterministically follows from the rule:  

 

D = I(X ≥ c),                (1) 

 

c – the cutoff - a point in the support of X known in advance.  

 

 

Examples. Incentives to students awarded on the basis of an observed test score; mandatory 

training programmes for individuals with more than a certain number of months in unemployment. 

 

 

We name it Allocation Rule 1. 

 

  



To the left of the cutoff c we observe: 

 

E{Y|X = c - ε} = E{Y0|X = c - ε}             (2) 

 

ε a ‘small’ positive number. To the right of the cutoff c we observe: 

 

E{Y|X = c + ε} = E{Y1|X = c + ε} 

       = E{Y0|X = c + ε} + E{Y1 – Y0|X = c + ε}.        (3) 

 

 

Comparing individuals immediately to the right of the cutoff to those immediately to the left of it: 

 

E{Y|X = c + ε} - E{Y|X = c - ε} = E{Y1 – Y0|X = c + ε}  

       + [E{Y0|X = c + ε} - E{Y0|X = c - ε}]      (4) 

 



The RDD identifying restriction. E{Y0|X} is a continuous function of X at X=c:   

 

E{Y0|X = c + ε} ≈ E{Y0|X = c - ε}            (5) 

 

 

If (5) holds, the difference in (4) identifies the average causal effect on marginal individuals 

exposed to the intervention, E{Y1 – Y0|X = c + ε}. 

 

 

The intuition behind the requirement of continuity E{Y0|X} at X=c. For the difference in (4) to 

deserve a causal interpretation it must be that in the absence of the intervention no discontinuity 

would be observed at c. 

 

  



To implement it:  

 

run the regression of the outcome Y on the running variable X separately to the right and 

to the left of the cutoff c. 

 

Measure the jump at c: E{Y|X = c + ε} - E{Y|X = c - ε} 

 

 

 

This is done using nonpar methods, e.g. Local Linear Regression. Rules for selecting the optimal 

bandwidth (see Calonico, Cattaneo and Titiunik, 2014; Imbens and Kalyanaraman, 2012). 

 

  



1.1. The multi-cutoff case. 

 

What if the intervention is implemented in J different sites. Individuals are ranked on the running 

variable separately in each site, the cutoff cj possibly varying across sites. 

 

Example: Fort, Ichino and Zanella (2019), non-/cognitive costs of daycare for children 0-2. 
 

Nothing new if the sample size is enough large for an analysis site by site. If not, the ony way out 

is to content yourself with an across-site average causal effect. 

 

The Normalizing-and-Pooling (NP) estimator (Cattaneo et al., 2016): 

  

  Normalize the running variable in each site: X - cj 

  

Pool together the J sites and proceed as before using the normalized running variable  

and the cutoff at zero. As if it were a standard RDD. 



The case we analyze - we name it Allocation Rule 2:   

 

In each site it is the number of available slots to be predetermined, Kj, j = 1, J.  

 

There are Nj applicants in site j. Slots are filled starting from the highest-score applicant, 

until exhaustion. The cutoff cj ex-post coincides with the score of the marginal unit 

exposed to the intervention. 

 
 
 
We show the NP estimator might fail in this set-up. Even if the continuity condition holds in each 
site! 
 
 
 
To avoid adding a layer of difficulty, we focus on the case in which units do not choose their site. 
 

 



2. Multi-site RDD with Allocation Rule 2: examples 

 

In our cursory survey we found 24 papers in economics/political science published since 2007 

falling into this set-up. 

  



3. The analogy to the Randomized Control Trial (RCT) 

   

If the RDD identifying restriction (5) holds – i.e. if the exposure status of units is truly determined 

by the sign of (X – c)  - it is as if in the vicinity of the cutoff a RCT took place.  

 

Thistlethwhite and Campbell forcefully made this point sixty years ago.  

 

 

An intervention implemented in J different sites following the RDD protocol is analogue to a 

stratified RCT, each site being a stratum within which the exposure status is randomly determined 

locally at the cutoff cj. 

 

 

If cj is determined in advance (Allocation Rule 1) the expected number of units in a ε right/left 

neighbourhood of the cutoff is Nj fj ε, where fj is the density of X at the cutoff in site j.  

 



That is, locally at the cutoff: 

 

Pr(D=1|X≈cj, site j) = 0.5              (6) 

 

 

Due to the ‘local’ randomness of D, the regression: 

 

Yij = α + β Dij + vij  j = 1, J  i = 1, Nj       (7) 

 

estimated restricting the sample to units ‘close’ to the cutoff identifies the average causal effect.  

 

 

Note that as far as identification is concerned there is no need to include site fixed-effects in the 

regression.  

 



The site fixed-effects are: 

 

E{Y0|X≈cj, site j} = α + E{v|X≈cj, site j},  j = 1, J        (8) 

 

Condition (6) implies zero correlation between the fixed-effect and D.  

 

 

Still, including site fixed-effects results in a more precise estimate of the causal parameter as far as 

sites are heterogeneous wrt the average outcome Y0 (see for instance Athey and Imbens, 2016).  

 

 

Also note that in this set-up you don’t need to adjust the standard standard error by the Moulton 

factor: it is one because – again thanks to (6) - the intraclass correlation of D is zero. 

 

 



When it is the number of slots per site – not the cutoff cj! – to be determined in advance (Allocation 

Rule 2) the cutoff cj is the score of the marginal unit exposed to the intervention. 

 

 

We show: 

 

• Pr(D=1|X≈cj, site j) ≠ 0.5 and varying across sites. As a consequence… 

 

• …the site fixed-effect (8) might be correlated to D. 

 

 

Bottom line: the regression of Y on D (locally at the cutoff) might fail to identify the causal 

parameter. 

  



4. The anatomy of the problem 

 

Under Allocation Rule 2, in site j: 

 

• not exposed,   Nj – Kj units to the left of the cutoff  

 

• exposed,   1 unit exactly at the cutoff cj 

Kj – 1 units to the right of the cutoff 

 

The expected number of unexposed/exposed units in a neighborhood of cj: 

 

• Nj fj ε in (cj -ε, cj), the same as under Allocation Rule 1 

 

• Nj fj ε + 1 - Nj fj ε/Kj in [cj, cj + ε) 

 

 



As a result: 

 

Pr(D=1|X≈cj, site j) = [1- 1/Kj + 1/Nj fj ε] / [2- 1/Kj + 1/Nj fj ε] ≠ 0.5    (9) 

 

In addition, this probability varies across sites as a function of Nj, fj and Kj. 

 

 

The main implication is that if the site fixed-effect E{Y0| X≈cj, site j} is correlated to Pr(D=1|X≈cj, 

site jj) the NP is biased. 

 

 

But wait… biased wrt what?  

 

 

  



4.1. The parameter of interest 

 

Under Allocation Rule 1 there is no ambiguity in the definition of the causal parameter: 

 

∑j wj E{Y1 – Y0|X=cj, site j}            (10) 

 

where wj is the weight of site j in the weighted average providing the average causal effect across 

sites at the cutoff: 

 

wj ∝ Nj fj ε               (11) 

 

 

This is no longer the case under Allocation Rule 2.  

 

 



As a result of (9), the weight of site j among marginally unexposed individuals – i.e. those in (cj -ε, 

cj) – is the same as in under Allocation Rule 1, wj
- = wj. 

 

On the other hand, the weight of site j among marginally exposed units – i.e. those in [cj, cj + ε) is: 

 

wj
+ ∝ 1 + (1-1/Kj) Nj fj ε             (12) 

 

Bottom line: under Allocation Rule 2 there are two different causal parameters, one for those 

marginally unexposed to the intervention – ATNT - the other one for those marginally exposed to 

it – the ATT.  

 

They coincide if and only if: 

 

∑j (wj
- - wj

+) E{Y1 – Y0|X=cj, site j} = 0          (13) 

 

That is, iff the difference between the two weights is uncorrelated to the average causal effect. 



In the following, we focus on the average treatment effect on marginally unexposed units (ATNT).  

 

 

This is often - albeit not always – a parameter of interest in a RDD because it aswers the question 

‘what would be the impact of a marginal expansion of the intervention?’  

 

 

The analysis for the ATT develops by analogy. 

 

 

  



4.2. The bias of the NP estimator (for the ATNT) 

 

The bias is: 

 

∑j (wj
+ - wj

-) E{Y1|X=cj, site j}             (14) 

 

 

Ingredients of the bias: 

 

• The average value (across sites) of Nj fj and of Nj fj/Kj 

 

• The degree of across site heterogenity wrt E{Y1|X≈cj, site j}, Nj fj and Nj fj/Kj 

 

• The correlation between E{Y1|X≈cj, site j} and Nj fj 

 

• The correlation between E{Y1|X≈cj, site j} and Nj fj/Kj 

 



In particular, the bias is zero if at least one of the following conditions hold:  

 

• Nj fj grows large in each site 

 

• in the absence of across site heterogeneity either wrt E{Y1| X≈cj, site j} or wrt (Nj fj, Kj)  

 

• corr{E{Y1|X≈cj, site j}, Nj fj} = corr{E{Y1|X≈cj, site j}, Nj fj/Kj} = 0 

 

 

The first condition implies there is no need to pool data across sites. But here we focus on the case 

in which Nj is ‘small’, i.e. one cannot help pooling…   

 

The second condition means that either the fixed-effect or the (average of the) explanatory 

variable D does not vary across sites. 

 

The third condition implies that the site fixed-effect is uncorrelated to the explanatory variable D.  



4.3. What if excluding marginal participants 

 

The origin of the problem is that as a result of Allocation Rule 2 there is one exposed unit exactly 

at the cutoff in each site.  

 

What if we throw away those units? 

 

The probability of exposure to the intervention around the cutoff: 

 

Pr(D=1|X≈cj, site j) = (1-1/Kj) / (2-1/Kj) < 0.5          (15) 

 

still varying across sites, unless Kj is constant (or large) across sites. 

 

 

That is, even here there is room for across site correlation between the site fixed-effect and the 

(average of the) explanatory variable D. 



4.4. Digging into the bias of the NP estimator 

 

Discussion so far points to the existence of a bias of the NP estimator (whether or not units at the 

cutoff are kept in the sample). 

 

The question is how much this bias is relevant in practice. 

 

 

Keeping units at the cutoff in the sample, the leading term of the bias when Nj is ‘small’ is: 

 

bias1 = - Cov{ E{Y1| X≈cj, site j}, Njfj/𝑁𝑓̅̅ ̅̅  }          (16) 

 

where 𝑁𝑓̅̅ ̅̅  is the average of Njfj across sites. 
 
 



For example, in an educational context the (absolute) value of this covariance is large when schools 
that attract students with the best outcome under exposure are also more popular, i.e., they 
attract a larger fraction of applicants (in general and in a neighborhood of the cutoff). 
 

 

Discarding units at the cutoff from the sample the bias is: 

 

bias2 = [- bias1 - Cov{ E{Y1| X≈cj, site j}, hj/ℎ̅ }] * ℎ̅ / (𝑁𝑓̅̅ ̅̅ -ℎ̅)      (17) 

 

where:  

 

hj = fj / (Kj/Nj) = f(cj | X ≥ cj) 

 

is the hazard function of the distribution of the running variable at the cutoff cj.  

 

 



Then: 

 

bias2 / bias1  = [- 1 + Cov{ E{Y1| X≈cj, site j}, hj/ℎ̅ } / Cov{ E{Y1| X≈cj, site j}, Njfj/𝑁𝑓̅̅ ̅̅  }]  

   * ℎ̅ / (𝑁𝑓̅̅ ̅̅ -ℎ̅)             (18) 

 

ℎ̅ / (𝑁𝑓̅̅ ̅̅ -ℎ̅) < 1. Then, whether bias2 < bias1 it depends on the sign and the size of the two 

covariances.   



5. Adding site fixed-effect to the picture. 

 

The intuition here is straightforward. Regressing Y on D pooling all sites together provides a biased 

estimate when there is correlation between the site fixed-effect and the explanatory variable. 

 

Then…   add site fixed-effect!  

 

 

The estimand of the fixed-effect estimator (FE) is: 

 

∑j pj [E{Y|X=cj + ε, site j} - E{Y|X=cj - ε, site j}] = ∑j pj E{Y1 – Y0|X=cj, site j}   (16) 

 

the equality following from the continuity of E{Y0|X, site j} at X=cj in each site. 

 

 

 



Contrast it to the estimand of NP: 

 

∑j wj
+ E{Y|X=cj + ε, site j} - ∑j wj

- E{Y|X=cj - ε, site j} = ∑j wj
+ E{Y1|X=cj, site j} - ∑j wj

- E{Y0|X=cj, site j}   

  

                   (17) 

  

 

The trick of FE is straightforward:  

 

• the NP estimator evaluates the average outcome across sites separately right and left to the 

cutoff, using different weights. Then, take the difference. 

  

• the FE estimator evaluate the average causal effect within in each site. Then, take the average 

across sites. 

 

 



Note however that the FE weight of site j in (16) is: 

 

pj  ∝ [1 + (2-1/Kj) Nj fj ε]  Pr(D=1|X≈cj, site j) Pr(D=0|X≈cj, site j) ≠ Nj fj ε    (18) 

 

That is, the FE estimand (16) is a meaningful causal parameter but the weights are not those 

required to get the ATNT (nor the ATT). 

 

 

Whether this set of weights makes a relevant difference wrt the set of weight one has in mind it is 

an empirical issue. 

 

 

Reweighting. It requires estimating the quantity in (17). But be careful: with ‘small’ Nj estimating it 

implies more noise into the estimate. 

 

 



But… removing units at the cutoff: 

 

pj  ∝ (Kj-1)/[2*(2*Kj-1)] * Nj fj ε ≠ Nj fj ε            (19) 

 

that is no need to estimate the reweighting factor, it depends only on Kj. 

 

  



5.1. Implementing the nonpar fixed-effect RDD 

 

To estimate the two averages E{Y|X = c + ε} and E{Y|X = c - ε} one typically uses local linear 

regressions which require selecting an optimal bandwidth around the cutoff.  

 

To our knowledge, there is no theory yet to select the optimal bandwidth for an RDD in the 

presence of group fixed-effect. 

 

In our experiments (not reported here) we implemented the following heuristic procedure: 

 

1) Start with a tentative bandwidth, bw0  

2) At iteration j, apply the within-group transformation using bwj-1 and pool the wg-transformed 

data across groups. Evaluate the optimal bandwidth on the wg-transformed data, bwj and 

estimate the causal effect. 

3) Replace bwj-1 by bwj and repete the steps. Up to convergence. 

  



6. Alternative estimators 

 

6.1. Double Normalizing 

 

It exploits the analogy to first-differencing in panel data models. The NP normalizes the running 

variable by taking the difference X-cj separately in each site. 

 

Do the same with the outcome of unexposed individuals by taking the difference between their 

outcome and the outcome of the exposed individual at the cutoff, separately in each site. 

 

Then, pool the samples of ‘doubly-normalized’ unexposed individuals across sites and run a 

standard RDD. 

 

Exposed individuals other than the one at the cutoff do not contribute to this estimator. 

 

In our experiments the DN estimator performs well, just slightly less precise than the FE. 



6.2. Rank distance 

 

Abdulkadiroglu, Angrist and Pathak (2014) use ranks of individuals in their own site/group as the 
running variable, then proceed using the NP estimator. 
 
This amounts to convert the running variable in the original metric using its empirical cdf, a non-
decreasing monotonic mapping.  
 
 
 
This mapping preserves the order of individuals within each site. Note however that if the number 
of individuals varies across sites this mapping is no longer order preserving, i.e. an individual ‘close’ 
to the cutoff in the original metric might end up ‘far away’ of it in the rank metric. 
 
In Abdulkadiroglu, Angrist and Pathak (2014) this is presumably not a problem because the size of 
their groups is approximately the same. 
 
 
 
We show that ‘small’ sites/groups are penalized by this strategy, i.e. they get a weight smaller than 
the one they would get in the original metric.  



6.3. Symmetric distance  

 
Boas and Hidalgo (2011) posit that in each site the cutoff relevant for unexposed individuals is the 
score of the last exposed individual, while the cutoff relevant for exposed individuals is the score 
of the first unexposed individual. 
 
This way there is no individual exactly at the cutoff.  
 
Note however that this strategy introduces in each site a positive difference between the cutoff 
relevant for unexposed individuals - cu

j - and the cutoff relevant for the exposed ones – ce
j, since 

by definition cu
j > ce

j. 
 
As an implication, if E{Y0|X} varies with X around the cutoff point(s): 
 
E{Y0| ce

j + ε} - E{Y0| cu
j - ε} ≠ 0 

 
That is, a violation of the RDD identifying restriction. 
 
The resulting bias converges to zero as Nj grows large because (cu

j - ce
j) -> 0, but it might be non 

negligible when the number of individuals per site is small. 



7. Summing up 

 

The strenght of the RDD comes from its close analogy to a RCT, even if only locally at the cutoff 

relevant for selection into exposure. 

 

This analogy breaks down when the RDD is implemented pooling data from J different groups/sites, 

if the following conditions jointly hold: 

 

• the probability of exposure at the cutoff varies across groups/sites  

 

• this probability is correlated to the site average potential outcomes. 

 

 

If selection into exposure is defined in each group/site by setting in advance a cutoff point in the 

support of the running variable - i.e. Allocation Rule 1, in our terminology - the first condition does 

not hold. Hence, the problem does not arise. 



Instead, if selection into exposure is defined by setting in advance the number of exposed 

individuals in each group/site – i.e. Allocation Rule 2, in our terminology - this problem might arise. 

 

According to our survey of published papers this set-up is quite common in empirical 

economics/political science. 

 

Under Allocation Rule 2, the heuristic procedure to normalize at zero the running variable in each 

group/site and to pool the J groups/sites together – as if it were a single ranking on the running 

variable – might produce a biased estimate of the causal effect. 

 

There is no theoretical reason to think this bias is negligible (even if in our empirical exercises we 

found that the bias of the NP estimator after removing individuals at the cutoff is small). 

 

The straightforward solution is adding group/site fixed effect to the regression.  

 

But take care… one has to pay a bit of attention to the weight attached to each site to obtain the 

intended causal parameter.  


