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Research question

We talk about cointegration and common stochastic trends in the presence of
heavy tails.
In essence,

we study how to estimate the number of common stochastic trends, m, in
an N-dimensional time series yt , where

N is fixed at the beginning, and of course we can determine the rank of
cointegration N −m;

our estimator can be used in the presence of arbitrarily heavy tails, with...

no need for estimation of nuisance parameters, chiefly the tail index;

we present an extension to large N.
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Literature: standard estimation

The literature on rank of cointegration/common trends:

very developed - basically no need for references as we all know them;

but the technology usually requires finite second moments at least
(essential),

as well as the correct specification of the VECM (desirable),

otherwise using e.g. Johansen’s tests results in size distortion, which can be
very severe (Caner, 1998).
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Literature: heavy tails

This could be an issue:

there is evidence that some datasets have heavy tails, where the second, or even the first,
moment may not exist;

references are many even here, but e.g. Samorodnitsky and Taqqu (1994) or Embrechts et
al. (2013).

There are some contributions on inference in this context:

Caner (1998, JoE) derives the asymptotics for Johansen’s type tests; see also Paulauskas

and Rachev (1998, AoAP) and She and Ling (2020, JoE);

need to estimate the tail index, a nuisance parameter, to implement the test (= to
get the critical values).

alternatives are

bootstrap/resampling: Cavaliere et al. (2018, ET) and Jach and Kokoszka (2004,
MCAP): unclear what to do in this case with cointegration though;
distribution free: Hallin et al (2011, 2016; JE): they assume finite second moment,
funnily enough, but more importantly one needs the correct specification of the
VECM.
Yao, Zhang and Robinson (2016, JASA) have a series of contribution on using
second moment matrices, essentially along similar lines as the literature on factor
models, but again finite variance is required.
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Our contribution

We:

not unlike Yao, Zhang and Robinson (2016), use second moment matrices;

find an eigen-gap result which does not depend on nuisance parameters;

use such eigen-gap to construct a randomised sequential procedure to determine m, which

can be used irrespective of having or not heavy tails, of how heavy they are, and of having
heteroskedasticity.
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Theory/model

Given the N-dimensional vector yt , consider the MA (∞) representation

∆yt = C (L) εt , (0.1)

Standard arguments allow to represent (0.1) as

yt = C
t∑

s=1

εs + C∗ (L) εt , (0.2)

having defined: C =
∑∞

j=0 Cj , C
∗ (L) =

∑∞
j=0 C

∗
j L

j and C∗j =
∑∞

k=j+1 Ck .
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Theory/model

Assumption

It holds that: (i) rank (C) = m, where 0 ≤ m ≤ N; (ii)
∥∥Cj

∥∥ = O
(
ρj
)

for some 0 < ρ < 1.

It is always possible to write C = PQ, where P and Q are full rank matrices of dimensions
N ×m and m × N respectively.
Defining the m-dimensional process xt = Q

∑t
s=1 εs , and using the short-hand notation

ut = C∗ (L) εt , we rewrite (0.2) as
yt = Pxt + ut . (0.3)

6/26



Theory/”Main” assumption

Assumption

It holds that: (i) εt is an i.i.d. sequence; (ii) for all nonzero vectors l ∈ RN , l ′εt has distribution
Flε with strictly positive density, which belongs in the domain of attraction of a strictly stable
law G with index 0 < η ≤ 2.

Note:

assumption is rather standard;

tail index is η, as you can see infinite mean is even allowed for;

we need iid, as is typical in this literature;

we do not need symmetry, unlike the literature.
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Theory: asymptotics/1

Let S11 =
∑T

t=1 yty
′
t ,

Proposition

We assume that Assumptions 1-2 are satisfied. Then there exists a random variable T0 such
that, for all T ≥ T0

λ(j) (S11) ≥ c0
T 1+2/η

(ln lnT )2/η
for j ≤ m. (0.4)

Also, for every ε > 0, it holds that

λ(j) (S11) = oa.s.
(
T 2/p (lnT )2(2+ε)/p

)
for j > m, (0.5)

for every 0 < p < η when η ≤ 2 with E ‖εt‖η =∞, and p = 2 when η = 2 and E ‖εt‖η <∞.
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Theory: asymptotics/2

Let S00 =
∑T

t=1 ∆yt∆y ′t .

Assumption

εt has density pε (u) such that
∫ +∞
−∞ |pε (u + y)− pε (u)| du ≤ c0 ‖y‖.

Proposition

We assume that Assumptions 1-3 are satisfied. Then

λ(1) (S00) = oa.s.

T 2/η

 j∏
i=2

lni T

2/η (
lnj+1 T

)(2+ε)/η

 , (0.6)

for every ε > 0 and every integer j ≥ 2. Also, there exists a random variable T0 such that, for all
T ≥ T0

λ(N) (S00) ≥ c0
T 2/η

(lnT )(2/η−1)(2+ε)
, (0.7)

for every ε > 0.
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Theory: asymptotics/3

We would use (the spectrum of) S−1
00 S11 to be scale-free. Putting the two propositions together

Theorem

Let Assumptions 1-3 hold. Then there exists a random variable T0 such that, for all T ≥ T0,

λ(j)
(
S−1

00 S11

)
≥ c0

T

(ln lnT )2/η

(
n∏

i=1
lni T

)2/η

(lnn+1 T )(2+ε)/η

, for 0 ≤ j ≤ m, (0.8)

for every ε > 0. Moreover, for all 0 < p < η and every ε, ε′ > 0,

λ(j)
(
S−1

00 S11

)
= oa.s.(T

ε′ (lnT )(2+ε)(2/η+2/p−1)), for j > m. (0.9)
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The test/1

Based on Theorem 1, we propose to use

φ
(j)
T = exp

{
T−κλ(j)

(
S−1

00 S11

)}
− 1, (0.10)

where κ ∈ (0, 1).
On account of Theorem 1, it holds that

P

(
ω : lim

T→∞
φ

(j)
T =∞

)
=1 for 0 ≤ j ≤ m,

P

(
ω : lim

T→∞
φ

(j)
T = 0

)
=1 for j > m,

so that we can assume from now on that

lim
T→∞

φ
(j)
T =∞ for 0 ≤ j ≤ m, (0.11)

lim
T→∞

φ
(j)
T =0 for j > m. (0.12)
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The test/2

We propose (a sequence of) tests for {
H0 : m ≥ j
HA : m < j

(0.13)

We present the construction of the test statistic as a three step algorithm.

Step 1 Generate an artificial sample
{
ξ

(j)
i , 1 ≤ i ≤ M

}
, with ξ

(j)
i ∼i.i.d.N (0, 1), independent

across j and independent of the original data.

Step 2 For each u ∈ U, define the Bernoulli sequence ζ
(j)
i (u) = I

(
φ

(j)
T ξ

(j)
i ≤ u

)
, and let

θ
(j)
T ,M (u) =

2
√
M

M∑
i=1

(
ζ

(j)
i (u)−

1

2

)
. (0.14)

Step 3 Compute

Θ
(j)
T ,M =

∫
U

[
θ

(j)
T ,M (u)

]2
dF (u) , (0.15)

where F (u) is a user-defined weight function.
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The test /3

Let P∗ denote the conditional probability with respect to the original sample; we use the

notation “
D∗→” and “

P∗→” to define, respectively, conditional convergence in distribution and in
probability according to P∗.

Theorem

We assume that Assumptions 1-4 are satisfied. If H0 holds, then, as min(T ,M)→∞ with

M1/2 exp
(
−T 1−κ−ε)→ 0, (0.16)

for any arbitrarily small ε > 0, it holds that

Θ
(j)
T ,M

D∗→ χ2
1, (0.17)

for each j , for almost all realisations of {εt , 0 < t <∞}. Under HA, as min(T ,M)→∞, it
holds that

M−1Θ
(j)
T ,M

P∗→
1

4
, (0.18)

for each j , for almost all realisations of {εt , 0 < t <∞}.
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Estimating m

The estimator of m (say m̂) is the output of the following algorithm:

Step 1 Run the test for H0 : m ≥ 1 based on Θ
(j)
T ,M . If the null is rejected, set m̂ = 0 and stop,

otherwise go to the next step.

Step 2 Starting from j = 1, run the test for H0 : m ≥ j based on Θ
(j+1)
T ,M , constructed using an

artificial sample
{
ξ

(j+1)
i

}M

i=1
generated independently of

{
ξ

(1)
i

}M

i=1
, ...,

{
ξ

(j)
i

}M

i=1
. If the null is

rejected, set m̂ = j and stop; otherwise repeat the step until the null is rejected.

Theorem

We assume that Assumptions 1-4 are satisfied. Define the level of each individual test as
α = α (T ). As min (T ,M)→∞ under (0.16), if α (T )→ 0, then it holds that P∗ (m̂ = m) = 1
for almost all realisations of {εt ,−∞ < t <∞}.
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Extension: estimation of m in heteroskedastic environments

Considering the case of heterogeneous innovations, viz.

εt = h

(
t

T

)
ut , (0.19)

Assumption

The function h (·) is a nontrivial, nonnegative function of bounded variation on [0, 1].

Corollary

We assume that Assumptions 1-5 are satisfied, with Assumption 2 modified to contain only
symmetric stable ut . Then, as min (T ,M)→∞ with (0.16), it holds that, for all j

P∗
(

Θ
(j)
T ,M > cα

)
→ α, (0.20)

under H0, with probability tending to 1. Under HA, (0.18) holds for each j , for almost all
realisations of {ut , 0 < t <∞}.
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Estimation of common trends

Recalling (0.3)
yt = Pxt + ut ,

a “natural” estimator of the common trends xt can be obtained using Principal Components.
Let υ̂j denote the eigenvector corresponding to the j-th largest eigenvalue of S11 under the

restrictions
∥∥υ̂j∥∥ = 1 and υ̂′i υ̂j = 0 for all i 6= j , and constructing P̂ = [υ̂1|...|υ̂m], the estimator

of the common trends is
x̂t = P̂′yt .

Theorem

We assume that Assumptions 1-5 are satisfied. Then it holds that

∥∥x̂t − H−1xt
∥∥ = OP (1) + OP

(
T−1+1/η

)
,

where H is an N × N invertible matrix.
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The large N case/1

We extend our analysis by proposing a novel approach to determine m in the large N case.
We can make use of the non-stationary factor representation

yt = ΛFt + ut , (0.21)

where Λ = (λ1|...|λN)′ is an N ×m matrix of loadings, Ft is an m × 1 vector of non-stationary

factors (with m <∞), and ut =
(
u1,t , ..., uN,t

)′
is an N-dimensional vector of idiosyncratic

shocks.
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The large N case/2

As before, Ft is a vector-valued stochastic trend, and we assume an MA structure for the ui,ts,
i.e.

Ft = Ft−1 + uFt , and ui,t =
∞∑
j=0

cui,jvi,t−j .
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The large N case/3

To deal with the large N case, however, as typical of factor models, we now make the
simplifying assumption of independence between the common factors Ft and the idiosyncratic
component ut .

Assumption

It holds that: (i) both
{
uFt
}

and
{
ui,t
}

satisfy Assumption 2; (ii)
{
uFt
}

and
{
ui,t
}

are two
mutually independent groups, for all 1 ≤ i ≤ N.

Assumption

The loadings λi are non-random m × 1 vectors with m <∞, and such that: (i) ‖λi‖ <∞,
1 ≤ i ≤ N; (ii) limN→∞ N−1Λ′Λ = ΣΛ, with ΣΛ an m ×m positive definite matrix.

Assumption

It holds that (i) as min (N,T )→∞, (NT )−2/η∑N
i=1

∑T
t=1 ∆u2

i,t
w→ Gη/2; and (ii) for all

nonzero vectors l ∈ Rm, as T →∞, T−2/η
∑T

t=1 (l ′∆Ft)
2 w→ G∗

η/2
.
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The large N case/4

Proposition

Let Assumptions 5-6 hold. Then there exist two random variables N0 and T0 such that, for all
N ≥ N0 and T ≥ T0

λ(j) (S11) ≥ c0
NT 1+2/η

(ln lnT )2/η
, for j ≤ m, (0.22)

Also, for every ε > 0, it holds that

λ(j) (S11) = oa.s.
(

(NT )2/p (lnN lnT )2(2+ε)/p
)
, for j > m, (0.23)

for every 0 < p < η when η ≤ 2 with E
∣∣εi,t ∣∣η =∞, and p = 2 when η = 2 with E

∣∣εi,t ∣∣2 <∞.
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The large N case/5

So there exists a gap between the m largest eigenvalues of S11 and the remaining ones as long as

lim
min(N,T )→∞

(NT )2/p (lnN lnT )2(2+ε)/p (ln lnT )2/η

NT 1+2/η
= 0;

in turn, this is implied by
N2/η−1−ε

T
→ 0, (0.24)

for any ε > 0.
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The large N case/6

A “natural” statistic to test for H0 : m ≥ j based on rescaling λ(j) (S11) by the trace of S00, viz.

ν̌
(j)
N,T = T−κ

λ(j) (S11)∑N
k=1 λ

(k) (S00)
, (0.25)

where κ > 0 is user-defined (and arbitrarily small), and use φ̌
(j)
N,T = exp

(
ν̌

(j)
N,T

)
− 1 to carry out

the test.

Theorem

Let Assumptions 4-7 and (0.24) hold. As min (N,T ,M)→∞ under (0.16), it holds that
P∗(m̌ = m)→ 1 with probability tending to 1.
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Numbers

Just comments:

works very well, irrespective of η

works very well, even when m = 0 and m = N

works well when N increases, but needs T bigger and bigger in that case.
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Empirics/1

We consider a set of N = 7 commodity prices: three oil prices (WTI, Brent crude,
and Dubai crude) and the prices of four metals (copper, gold, nickel, and cobalt).
But why don’t I show you some numbers....
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Empirics/2

We evaluate the presence and number of common stochastic trends in the yield
curve.
We use monthly data with maturities from 6 months up to 100 years (N = 196),
spanning the period from January 1985 to September 2018 (T = 405).
But why don’t I show you some numbers....
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Thank you!


