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Research question

We talk about cointegration and common stochastic trends in the presence of
heavy tails.
In essence,

@ we study how to estimate the number of common stochastic trends, m, in
an N-dimensional time series y;, where

@ N is fixed at the beginning, and of course we can determine the rank of
cointegration N — m;

@ our estimator can be used in the presence of arbitrarily heavy tails, with...
@ no need for estimation of nuisance parameters, chiefly the tail index;

@ we present an extension to large N.
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Literature: standard estimation

The literature on rank of cointegration/common trends:
@ very developed - basically no need for references as we all know them;

@ but the technology usually requires finite second moments at least
(essential),

@ as well as the correct specification of the VECM (desirable),

@ otherwise using e.g. Johansen's tests results in size distortion, which can be
very severe (Caner, 1998).
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Literature: heavy tails

This could be an issue:

@ there is evidence that some datasets have heavy tails, where the second, or even the first,
moment may not exist;

@ references are many even here, but e.g. Samorodnitsky and Taqqu (1994) or Embrechts et
al. (2013).

There are some contributions on inference in this context:

@ Caner (1998, JoE) derives the asymptotics for Johansen's type tests; see also Paulauskas
and Rachev (1998, AoAP) and She and Ling (2020, JoE);

@ need to estimate the tail index, a nuisance parameter, to implement the test (= to
get the critical values).

@ alternatives are

@ bootstrap/resampling: Cavaliere et al. (2018, ET) and Jach and Kokoszka (2004,
MCAP): unclear what to do in this case with cointegration though;

@ distribution free: Hallin et al (2011, 2016; JE): they assume finite second moment,
funnily enough, but more importantly one needs the correct specification of the
VECM.

@ Yao, Zhang and Robinson (2016, JASA) have a series of contribution on using
second moment matrices, essentially along similar lines as the literature on factor
models, but again finite variance is required.
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Our contribution

not unlike Yao, Zhang and Robinson (2016), use second moment matrices;
find an eigen-gap result which does not depend on nuisance parameters;
use such eigen-gap to construct a randomised sequential procedure to determine m, which

can be used irrespective of having or not heavy tails, of how heavy they are, and of having
heteroskedasticity.
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Theory/model

Given the N-dimensional vector y:, consider the MA (co) representation
Ayt = C(L)Et, (01)

Standard arguments allow to represent (0.1) as

t
ye=CY e+ C*(L)es, (0.2)
s=1

having defined: C =322 G, C* (L) =322 Gl and ¢ =302, Gk
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Theory/model

Assumption

It holds that: (i) rank (C) = m, where 0 < m < N, (ii) ||CJ|| =0 (p/) for some 0 < p < 1. J

It is always possible to write C = PQ, where P and Q are full rank matrices of dimensions
N x m and m x N respectively.

Defining the m-dimensional process x; = QZ;:1 €s, and using the short-hand notation
us = C* (L) e¢, we rewrite (0.2) as

Yt = PXt + ut. (03)

6/26



Theory/” Main” assumption

Assumption

It holds that: (i) e: is an i.i.d. sequence; (ii) for all nonzero vectors | € RN, I'e; has distribution
Fic with strictly positive density, which belongs in the domain of attraction of a strictly stable
law G with index 0 < n < 2.

Note:

@ assumption is rather standard;

@ tail index is 7, as you can see infinite mean is even allowed for;
@ we need iid, as is typical in this literature;
o

we do not need symmetry, unlike the literature.
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Theory: asymptotics/1

Let 511 = Zthl iyt
Proposition

We assume that Assumptions 1-2 are satisfied. Then there exists a random variable Ty such
that, for all T > Ty

AU) (S11) 71 o fe (0.4)
S > ¢ or j < m. 0.4
1) 2 O(Inln )2/n J >
Also, for every € > 0, it holds that
A (511) = 0as. (7 2/p (InT )2(2 6)/") for j > m, (0.5)

for every 0 < p < n when n < 2 with E ||e¢]|" = oo, and p =2 when 1 = 2 and E ||&¢||" < oco.

4
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Theory: asymptotics/2

Let Soo = 3/, Ay:Ay].
Assumption

et has density p. (u) such that ffﬁfj |pe (u+y) — pe (u)| du < co||y]|-

Proposition

We assume that Assumptions 1-3 are satisfied. Then

: 2/n
J
A (S00) = Oas. T72/7 (Hmi T> (lnj+1 T)(2+€)/77 , (0.6)
=2

for every € > 0 and every integer j > 2. Also, there exists a random variable Ty such that, for all
T > To
T2/7

(N) .
A (S00) = o (In T)(Z/n—l)(2+e)’

(0.7)

for every € > 0.
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Theory: asymptotics/3

We would use (the spectrum of) 50_01511 to be scale-free. Putting the two propositions together

Theorem

Let Assumptions 1-3 hold. Then there exists a random variable Ty such that, for all T > Ty,
; T
) (5&)1511> >
n 2/n
(Inln T)?/7 (1‘[ In; T) (Inpyy T)CF/1
i=1

, for0 <j<m, (0.8)

for every € > 0. Moreover, for all 0 < p < n and every ¢,¢' > 0,

AW (5&)1511) = 0,5 (T (In T)TINR/1+2/p=1)y " for j > m.

(0.9)
y
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The test/1

Based on Theorem 1, we propose to use
(15(7{) = exp { e\ (50701511>} -1, (0.10)

where x € (0,1).
On account of Theorem 1, it holds that

P(w: lim ¢(7D:oo> =1lfor0<j<m,
T—o0
Plw: lim ¢¥ =0) =1forj>m
T—oo T ’
so that we can assume from now on that

lim ¢ =oc for 0 < j < m, (0.11)
T—oo

. G _ .
Tll_)moo ¢35 =0 for j > m. (0.12)
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The test/2

We propose (a sequence of) tests for

{ Ho:m>j (0.13)

Ha:m<j
We present the construction of the test statistic as a three step algorithm.

Step 1 Generate an artificial sample {5}"), 1<i< M}, with €9 ~i.id.N (0,1), independent
across j and independent of the original data.
Step 2 For each u € U, define the Bernoulli sequence Ql.(’) (u)=1 (d)({_)f,(j) < u), and let

09, () Z (g‘f ;) : (0.14)

Step 3 Compute
. . 2
eg{M:/U[eng(u)] dF (u), (0.15)

where F (u) is a user-defined weight function.
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The test /3

Let P* denote the conditional probability with respect to the original sample; we use the

. WD WP . . . . L . .
notation “=" and “—" to define, respectively, conditional convergence in distribution and in
probability according to P*.

Theorem

We assume that Assumptions 1-4 are satisfied. If Hy holds, then, as min(T, M) — co with
M2 exp (-T="=) >0, (0.16)
for any arbitrarily small e > 0, it holds that
N D
09, %X, (0.17)

for each j, for almost all realisations of {e:,0 < t < co}. Under Hp, as min(T, M) — oo, it

holds that 1
Moy, % 7. (0.18)

for each j, for almost all realisations of {e+,0 < t < 0co}.
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Estimating m

The estimator of m (say m) is the output of the following algorithm:

Step 1 Run the test for Hy : m > 1 based on O(.PM. If the null is rejected, set m = 0 and stop,
otherwise go to the next step.

Step 2 Starting from j = 1, run the test for Hy : m > j based on @%’;Jr,\},), constructed using an

artificial sample {E(JH } generated independently of {5 } {5(" } . If the null is
=
rejected, set m = j and stop, otherwise repeat the step until the nuII is rejected.

Theorem

We assume that Assumptions 1-4 are satisfied. Define the level of each individual test as
oa=0oa(T). Asmin(T, M) — co under (0.16), if « (T) — 0, then it holds that P* (m = m) =1
for almost all realisations of {et, —co < t < oo}.
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Extension: estimation of m in heteroskedastic environments
Considering the case of heterogeneous innovations, viz.

ce=h (%) s, (0.19)

Assumption

The function h(-) is a nontrivial, nonnegative function of bounded variation on [0, 1].

V.
Corollary
We assume that Assumptions 1-5 are satisfied, with Assumption 2 modified to contain only
symmetric stable uz. Then, as min (T, M) — oo with (0.16), it holds that, for all j
P (09 >ca) = a, (0.20)
under Hy, with probability tending to 1. Under Hp, (0.18) holds for each j, for almost all
realisations of {us,0 < t < oo}. )
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Estimation of common trends

Recalling (0.3)
Yt = Pxt + ux,

a “natural” estimator of the common trends x; can be obtained using Principal Components.
Let U; denote the eigenvector corresponding to the j-th largest eigenvalue of Si1 under the

~ o~

restrictions ||9;|| = 1 and ©}0; = 0 for all i # j, and constructing P = [01]...|0m], the estimator
of the common trends is N
S(\t = Plyt.

Theorem
We assume that Assumptions 1-5 are satisfied. Then it holds that
% = H= x| = Op (1) + Op (T7242/7)

where H is an N x N invertible matrix.
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The large N case/1

We extend our analysis by proposing a novel approach to determine m in the large N case.
We can make use of the non-stationary factor representation

Yt = /\Ft -+ U, (021)
where A = (A1]...|A\n)" is an N x m matrix of loadings, F; is an m x 1 vector of non-stationary
factors (with m < o0), and ur = (Ul,n ey uN,t)l is an N-dimensional vector of idiosyncratic
shocks.
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The large N case/2

As before, F; is a vector-valued stochastic trend, and we assume an MA structure for the u; ;s,
i.e.

oo
F
Ft = Fi—1+u;, and uj; = E c,-‘fjv,-,t_j.
=0
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The large N case/3

To deal with the large N case, however, as typical of factor models, we now make the
simplifying assumption of independence between the common factors F; and the idiosyncratic
component u¢.

Assumption

It holds that: (i) both {uf} and {u,-’t} satisfy Assumption 2; (ii) {uf} and {u,-’t} are two
mutually independent groups, for all 1 < i < N.

v
Assumption
The loadings \; are non-random m X 1 vectors with m < oo, and such that: (i) | \;|| < oo,
1< i <N; (i) limy_ oo N“INA = Xp, with Xp an m X m positive definite matrix. )
Assumption
It holds that (i) as min (N, T) = oo, (NT)">/7 SN S5 Au2, % G, »; and (ii) for all
nonzero vectors | € R™, as T — oo, T2/ 23—:1 (rar)* % G;/z' )

19/26



The large N case/4

Proposition

Let Assumptions 5-6 hold. Then there exist two random variables Ny and Ty such that, for all
N>Ngand T > Ty

. NTL+2/n
2D (S1) > o—————, forj < m, 0.22
(1) (Inln T)2/17 ( )
Also, for every € > 0, it holds that
AU (S11) = 046, <(NT)2/" (InNln T)2(2+f)/"> , forj > m, (0.23)

for every 0 < p < n when n < 2 with E |s,-’t|n =00, and p =2 whenn =2 with E |s,-,t|2 < 00.

y
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The large N case/5

So there exists a gap between the m largest eigenvalues of S1; and the remaining ones as long as

y (NT)?/P (In N In T)2+)/P (In1n T)?/7 0
im —0-
min(N,T)— oo NTL+2/n !

in turn, this is implied by
N2/n—1—€

-0, 0.24
T (0.24)

for any ¢ > 0.
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The large N case/6

A “natural” statistic to test for Hy : m > j based on rescaling AW (S11) by the trace of Sgo, viz.

0 _ s A0 (s11)

N 0.25
Ay AU (Spo) (0:29)

where r > 0 is user-defined (and arbitrarily small), and use qvb(,(,?T = exp (D%?T) — 1 to carry out
the test.

Theorem

Let Assumptions 4-7 and (0.24) hold. As min (N, T, M) — co under (0.16), it holds that
P*(h = m) — 1 with probability tending to 1.
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Numbers

Just comments:
@ works very well, irrespective of n
@ works very well, even when m=0and m= N

@ works well when N increases, but needs T bigger and bigger in that case.
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Empirics/1

We consider a set of N = 7 commaodity prices: three oil prices (WTI, Brent crude,

and Dubai crude) and the prices of four metals (copper, gold, nickel, and cobalt).
But why don’t | show you some numbers....
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Empirics/2

We evaluate the presence and number of common stochastic trends in the yield
curve.

We use monthly data with maturities from 6 months up to 100 years (N = 196),

spanning the period from January 1985 to September 2018 (T = 405).
But why don't | show you some numbers....
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Thank youl!



